Long Rates, Life Insurers, and Credit Spreads

Ziang Li Imperial College London

CEBRA Annual Meeting August 2025

Introduction

- ► The corporate bond market has expanded dramatically in recent years (\$12 tn in 2025)
 - It has become the dominant funding source for US firms (vs. \$3 tn C&I loans)
 - Credit spreads play an important role in firm borrowing and investment decisions
- ► Life insurers are the largest institutional investors in the US bond market (>20%) ■
- How do life insurers matter for corporate bond pricing? Existing literature:
 - 1. risk-based capital constraint and fire sales (Ellul et al., 2011; Murray and Nikolova, 2022)
 - 2. stability in crises (Chodorow-Reich et al., 2021; Coppola, 2024)

This Paper: a new channel through their interest rate risk exposure

The Duration Mismatch Channel

- ► After the GFC, life insurers have sustained large negative duration gaps
 - negative duration gap: $D_{\text{asset}} < D_{\text{liability}} \implies D_{\text{net worth}} < 0$
 - 1% \uparrow in the 10-year Treasury yield \implies 6% \uparrow in insurers' market equity
- ► The Duration Mismatch Channel

```
10-year Treasury yield \uparrow \implies insurers' net worth \uparrow \implies risk-bearing capacity \uparrow, risky bond demand \uparrow \implies equilibrium credit spreads \downarrow
```

► This Paper: theoretical model and empirical evidence on the duration mismatch channel

Main Results

- ► An Intermediary Asset Pricing Model:
 - 1. Analytical insights: long rate $\uparrow \implies$ credit spread \downarrow when insurers' duration gap < 0
 - 2. Extensions: quantitative importance, duration management
- ► Long Rates and Credit Spreads:
 - 1. Unconditional co-movement: cov(long rate, credit spread) < 0, esp. in low credit ratings
 - 2. High-frequency MP shocks: long rate $\uparrow \implies$ credit spread \downarrow
 - 3. Bond issuance: long rate $\uparrow \Longrightarrow HY$ bond issuance \uparrow relative to IG bond issuance
- ► The Key Role of Life Insurers:
 - 1. Risk exposure: life insurers face severe duration mismatch, rates $\uparrow \Longrightarrow$ net worth \uparrow
 - 2. Identification via RDD: life insurer ownership ↑ ⇒ stronger co-movement
 - 3. Bond transactions: insurers rebalance towards risky bonds after long rates \(\tau \)

Road Map

I. A Model of the Bond Market

2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

4. Conclusions

The Duration Mismatch Channel

I build a model of bond demand from life insurers

The Duration Mismatch Channel

▶ I build a model of bond demand from life insurers

► The Duration Mismatch Channel:

Road Map

I. A Model of the Bond Market

2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

4. Conclusions

Data

Data source

- Bond Indices: Intercontinental Exchange (ICE) via FRED
- Individual Bond Price and Characteristics: Mergent FISD and TRACE via WRDS Bond Return
- Insurer Holdings & Transactions: National Association of Insurance Commissioners (NAIC)

Corporate bond ratings (Becker and Ivashina, 2015)

NAIC Category	Credit Ratings	Investment Grade	5-year Default Rate (1990-2010)	Capital Requirement
NAIC I (highest)	AAA, AA, A	√	0.00%, 0.09%, 0.69%	0.3%
NAIC 2	BBB	\checkmark	2.62%	0.96%
NAIC 3	BB	×	6.76%	3.39%
NAIC 4	В	×	8.99%	7.38%
NAIC 5	CCC	×	34.38%	16.96%
NAIC 6 (lowest)	CC, C, D	x	n.a.	19.50%

Long-term Rate and Credit Spreads (Post-GFC)

Long-term Rate and Credit Spreads (Pre-GFC)

Long-term Rate and Credit Spreads

► I next estimate comovements between credit spreads and 10-year yields ► by maturity

$$\Delta y_{it} = \alpha_i + \alpha_{D(i),t} + \sum_{k=2}^{6} \beta_k \cdot \mathbf{1}_{\{\text{NAIC }k\}} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}$$

- $-y_{it}$: bond yield α_i : bond FE $\alpha_{D(i),t}$: duration-time FE $y_t^{(10)}$: 10-year yield X_{it} : controls
- $-\beta_k$: change in the (NAIC k)-(NAIC I) spread (%) when $y_t^{(10)}$ increases by I% Merton EDF

High-Frequency Evidence from FOMC Meetings

Impulse responses of spreads to high-frequency $y_t^{(10)}$ shocks Yield CDS News

$$\mathsf{Spread}_{t+h} - \mathsf{Spread}_{t-1} = lpha_h + eta_h \left(\Delta y_t^{(10)} ig|_{\mathsf{FOMC}}
ight) + arepsilon_{t,h}$$

Figure: Cumulative responses to a 1% increase in $y_t^{(10)}$ and 90% confidence intervals (2010-2022)

High-Frequency Evidence from FOMC Meetings

Impulse responses of spreads to high-frequency $y_t^{(10)}$ shocks Yield CDS News

$$\mathsf{Spread}_{t+h} - \mathsf{Spread}_{t-1} = lpha_h + eta_h \left(\Delta y_t^{(10)} ig|_{\mathsf{FOMC}}
ight) + arepsilon_{t,h}$$

Figure: Cumulative responses to a 1% increase in $y_t^{(10)}$ and 90% confidence intervals (1997-2007)

Credit Spreads and Bond Issuance

- ▶ Long rate \downarrow \Longrightarrow Credit Spreads \uparrow \Longrightarrow HY yield \uparrow against IG yield
- ▶ The bond market shifted towards the IG segment amid lower rates post-2008

Road Map

I. A Model of the Bond Market

2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

4. Conclusions

Interest Rate Exposure of Life Insurers

$$y_t^{(10)}\uparrow \Longrightarrow \textit{market equity}\uparrow, \textit{market leverage}\downarrow$$

	Pre-2007	Post-2019
$\Delta y_t^{(10)}$	-0.0723 [0.947]	6.008*** [0.000]
S&P 500 Return	<u> </u>	<u>√</u>
$\Delta y_t^{(1m)}$	\checkmark	\checkmark
Observations	260	663
(*p < 0.1, **p)	< 0.05, *** <i>p</i>	< 0.01)

Causal Impact of Life Insurers' Bond Holdings

- ▶ Next, I study causal impact of life insurers' bond holdings on the negative comovement
- ► Identification: regression discontinuity design
 - Many mutual funds are mandated to invest in bonds with maturity \leq 10 years
 - ⇒ A discontinuity in investor composition

Causal Impact of Life Insurers' Bond Holdings

- Next, I study causal impact of life insurers' bond holdings on the negative comovement
- ► Identification: regression discontinuity design
 - Many mutual funds are mandated to invest in bonds with maturity \leq 10 years
 - ⇒ A discontinuity in investor composition
- lacktriangle Specification: interact $y_t^{(10)}$ with life insurer share $\varphi_{it}^{\mathrm{lns}}$

$$\Delta y_{it} = \alpha_t + \left(\beta + \frac{\gamma \varphi_{it}^{\mathsf{lns}}}{2}\right) \mathbf{1}_{\{\mathsf{NAIC}\ 3-6\}} \Delta y_t^{(10)} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}.$$

- $-\beta$ measures comovements between HY-IG spreads and $y_t^{(10)}$ in bonds not held by insurers
- $-\gamma$ measures how life insurers' ownership enhances the comovement
- RDD: I use the discontinuity to instrument for insurer share $\varphi_{it}^{\mathsf{Ins}}$

$$\varphi_{it}^{\mathsf{Ins}} = \alpha + \delta \cdot \mathbf{1}_{\{\mathsf{maturity}_{it} > c\}} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}$$

First Stage: Discontinuity

First stage

$$\varphi_{it}^{\mathsf{Ins}} = \alpha + \beta \cdot \mathbf{1}_{\{\mathsf{maturity}_{it} > c\}} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}$$

► I test the validity of the discontinuity using the robust bias-corrected method developed by Calonico, Cattaneo, and Titiunik (2014)

Method	δ	<i>p</i> -value	[95% Conf. Interval]
OLS	4.73	0.000	[4.15, 5.32]
RDD, Conventional	4.43	0.000	[2.46, 6.39]
RDD, Bias-corrected	4.52	0.000	[2.55, 6.48]
RDD, Bias-corrected, Robust	4.52	0.000	[2.22, 6.81]

Second Stage: Life Insurers and Credit Spreads

$$\Delta y_{it} = \alpha_t + \left(\beta + \gamma \varphi_{it}^{\mathsf{lns}}\right) \mathbf{1}_{\{\mathsf{NAIC}\ 3-6\}} \Delta y_t^{(10)} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}.$$

- Hypothesis: $\gamma < 0$ (i.e., insurance ownership $\uparrow \Longrightarrow$ stronger negative comovements)
- ▶ Post-GFC, the negative comovement is stronger in bonds owned more by life insurers

	Pre-2007	Post-2009
γ	-1.529	-13.81***
	[0.593]	[0.001]
Controls	✓	√
Time FE	\checkmark	\checkmark
Kleibergen-Paap F -stat	131.927	79.925
Observations	4447	10795

Life Insurers' Bond Transactions

Next, I examine how insurers adjust bond transactions following changes in $y_t^{(10)}$

$$\Delta\left(\frac{\mathsf{Net}\;\mathsf{Purchase}^{\mathsf{HY},\;h}_t}{\mathsf{Net}\;\mathsf{Purchase}^{\mathsf{Total},\;h}_t}\right) = \alpha + \beta \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_t + \varepsilon_t$$

- Hypothesis ($\beta > 0$): $y_t^{(10)} \uparrow \Longrightarrow$ risk-bearing capacity $\uparrow \Longrightarrow$ more risky bond purchases

	Pre-	2007	Post-2009	
	h = 3m	h = 6m	h = 3m	h = 6m
β	-0.269	0.562	0.750*	2.346***
	[0.571]	[0.280]	[0.071]	[0.000]
R ² Observations	.537	.723	.305	.387
	54	54	114	

Life Insurers' Bond Transactions

- ► Variable annuity (VA) insurers are more exposed than non-VA insurers
 - VAs typically have minimum return guarantees (e.g., 2% for 10 years), which have very high convexity and caused negative duration gaps post-2008 (Koijen Yogo, 2022; Sen, 2022)
- ▶ VA insurers should adjust their bond purchases more in response to long rates

$$\Delta\left(\frac{\mathsf{Net\ Purchase}^{\mathsf{HY},\ h}_{jt}}{\mathsf{Net\ Purchase}^{\mathsf{Total},\ h}_{jt}}\right) = \alpha_j + \alpha_t + \beta \cdot (\mathsf{VA\ Share})_{j,2009} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_{jt} + \varepsilon_{jt}$$

	h=3m		h = 6m	
$(VA \; Share)_{j,2009} \cdot \Delta y_t^{(10)}$	0.133** [0.016]	0.152** [0.012]	0.926*** [0.000]	0.963*** [0.000]
Insurer FE	✓	√	✓	√
Time FE R^2	.009	.02 I	.019	.034
Observations	27518	27518	23755	23755

Quantity Purchased and Back-of-the-Envelope Calculations

▶ How net purchases of HY bonds move relative to net purchases of IG bonds

$$\begin{aligned} \text{Net Purchase}_t^{\mathsf{NAIC}\;k,\;h} &= \alpha_t + \sum \pmb{\beta_k} \cdot \mathbf{1}_{\{\mathsf{NAIC}\;k\}} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_t + \varepsilon_t \\ &- \beta_k = \Delta(\mathsf{NAIC}\;k\;\mathsf{purchases}) - \Delta(\mathsf{IG}\;\mathsf{purchases}) \;\mathsf{if}\; y_t^{(10)} \uparrow \mathsf{I}\% \end{aligned}$$

	Pre-2007	Post-2009	Excess HY purchase = 6.11 + 6.90 + 7.27 = 20.28 bn
β_3	0.712 [0.855]	6.112** [0.017]	Total HY outstanding = 727.6 bn
eta_4	0.549	6.900**	Fraction purchased = 20.28 / 727.6 = 2.8%
P4	[0.892]	[0.014]	 Active MF elasticity = 0.75 (Darmouni et al., 2025)
eta_{5-6}	0.659	7.268**	Price impact = 2.8%/0.75 = 3.73%
	[0.878]	[0.013]	 HY bond duration = 4.45 yrs
Time FE R^2	√ .162	√ .108	- Spread impact \approx 3.73%/4.45 = 0.84%
Observations	270	582	— Empirical counterpart: 1.27%

Road Map

I. A Model of the Bond Market

2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

4. Conclusions

Conclusions

- ▶ I propose a *duration mismatch channel* where life insurers' interest rate risk exposure affects corporate bond pricing
 - long rates $\uparrow \implies$ net worth $\uparrow \implies$ risk-bearing capacity $\uparrow \implies$ credit spreads \downarrow
- Consistent with the channel, I find an empirical shift in how bond credit spreads co-moves with long rates
 - after the GFC, credit spreads tighten when the 10-year Treasury yield increases
- In the cross-section, the channel is stronger in bonds held more by life insurers
- Implications for (unconventional) monetary policy

Appendix

Life Insurers and Long Rate Pass-through

Controlling for Merton's Expected Default Frequency (EDF) • Return

Results for Different Maturity Categories

Local Projection

► Impulse responses of bond yield indices

$$\mathsf{Yield}_{t+h} - \mathsf{Yield}_{t-1} = lpha_h + eta_h \left(\Delta y_t^{(10)} ig|_{\mathsf{FOMC}}
ight) + arepsilon_{t,h}$$

Controlling for CDS Spreads

► Control for I-month rate shocks and average CDS spreads of each category

$$\begin{split} \mathsf{Spread}_{t+h}^k - \mathsf{Spread}_{t-1}^k &= \alpha_h + \beta_h \left(\Delta y_t^{(10)} \big|_{\mathsf{FOMC}} \right) \\ &+ \gamma_h \left(\Delta y_t^{(1m)} \big|_{\mathsf{FOMC}} \right) + \delta_h \left(\Delta (\mathsf{CDS} \, \mathsf{Spread})_t^{\mathsf{Rating}} \, {}^{k-AAA} \big|_{\mathsf{FOMC}} \right) + \varepsilon_{t,h}. \end{split}$$

Endogenous Policy Response

- ▶ Monetary policy might respond to economic news (Bauer and Swanson, 2022)
 - But, such news mostly impacts near-term rates and should have small effects on long rates
 - Shocks to $y_t^{(10)}$ mostly reflect changes in expected future interest rates
- ► Hillenbrand (2023):

$$\Delta y_{t_i}^{(10)}\big|_{\mathsf{FOMC}_i} = \beta_0 + \beta_1 X_{t_i-2} + \varepsilon_i$$

None of the main variables in Bauer and Swanson (2022) predicts changes in $y_t^{(10)}$

- (changes in the) level and slope of the yield curve
- stock returns, Δ commodity prices, Δ VIX
- economic activity indices, labor market surprises
- NBER recessions

Bond Ownership

Life Insurer Duration Mismatch

► Two-year rolling estimates of

$$\mathsf{ExcessReturn}_{i,t} = \alpha + \beta \Delta y_t^{(10)} + \mathsf{Controls} + \varepsilon_{i,t}$$

lacksquare Estimated exposure to interest rate risk \hat{eta}_t

Drivers of Insurers' Duration Mismatch Post-2008

1. Low interest rates increased the duration of liabilities more than assets

$$\frac{\partial D_L}{\partial (-y)} = \mathsf{Convexity}_L > \mathsf{Convexity}_A = \frac{\partial D_A}{\partial (-y)}$$

- Liabilities are longer
- Embedded options in annuity liabilities exercised less when rates are low, effectively extending the duration of annuities

2. Institutional factors

- Market incompleteness / Scarcity of long-term assets
 - the typical duration of bonds and MBS is 8-10 years
 - the duration of insurers' liabilities increased from 13-15 years to almost 20 years
- Regulatory distortions (Sen, 2022; Huber, 2022)
 - regulatory equity is a mix of book equity and market equity

Life Insurer Duration Mismatch

► The duration of life insurers' liabilities and assets (Huber, 2022)

Life Insurer Bold Holdings

	$1\{arphi_{it}^{Ins}>0\}$	$\mathbb{E}_t[arphi_{it}^{Ins} arphi_{it}^{Ins}>0]$	$\max\varphi_{it}^{Ins}$	Amount Outstanding (\$ bn)
NAIC I	88.7%	29.4%	100%	2268.3
NAIC 2	93.6%	31.7%	100%	1821.2
NAIC 3	89.3%	13.0%	98.0%	381.3
NAIC 4	79.5%	5.6%	90.9%	254.0
NAIC 5	58.8%	3.4%	75.7%	80.2
NAIC 6	31.5%	2.4%	64.9%	12.1
NAIC 1-2	91.0%	30.5%	100%	4089.5
NAIC 3-6	80.9%	9.3%	98.0%	727.6

Table: Life Insurance Ownership (2010-2019).

First Stage: Cutoff Choice

Robustness: Excluding New Issues & Maturity at Issuance

	Bond Age $> 1m$	${\it Issuance Maturity} > 10.25$
γ	-13.78***	-12.02***
	[0.001]	[0.000]
Controls	✓	✓
Time FE	\checkmark	✓
Kleibergen-Paap F -stat	79.859	75.024
Observations	10680	3427

Note: \overline{t} -statistics based on clustered standard errors in brackets. *p < 0.1, **p < 0.05, ***p < 0.01.

