## The Deposit Franchise and the Risk-Taking Channel of Monetary Policy\*

Ricardo Duque Gabriel<sup>1</sup> Ziang Li<sup>2</sup> Ali Uppal<sup>2</sup>

<sup>1</sup>Federal Reserve Board

<sup>2</sup>Imperial College London

### EFI Workshop

November 2025

\*These are our views and not those of the Federal Reserve Board, or the Federal Reserve System.

### **Motivation**

- Monetary policy directly impacts financial stability through bank behaviour
  - The *"risk-taking channel"* is key: changes in interest rates alter banks' incentives to take risk

### Motivation

- · Monetary policy directly impacts financial stability through bank behaviour
  - The "risk-taking channel" is key: changes in interest rates alter banks' incentives to take risk
- But not all banks respond the same way
  - There is substantial *heterogeneity* in how banks adjust lending risk in response to rate changes
  - We identify a new source of heterogeneity linked to banks' deposit franchise

### Motivation

- Monetary policy directly impacts financial stability through bank behaviour
  - The "risk-taking channel" is key: changes in interest rates alter banks' incentives to take risk
- But not all banks respond the same way
  - There is substantial *heterogeneity* in how banks adjust lending risk in response to rate changes
  - We identify a new source of heterogeneity linked to banks' deposit franchise
- Why it matters:
  - · Banks' response to monetary policy is crucial for understanding monetary policy transmission
  - · Banks' risk-taking incentives shape how monetary policy and financial stability interact

### **Our Contributions**

- Theory: New mechanism links monetary policy, deposit franchise, and risk-taking
  - Banks with stronger deposit franchise raise deposits rates less when policy rates rise
  - They experience larger increases in deposit spreads and deposit profitability o skin in the game
  - $\Rightarrow~$  Banks with stronger franchise reduce risk-taking more in response to higher rates

### **Our Contributions**

- Theory: New mechanism links monetary policy, deposit franchise, and risk-taking
  - Banks with stronger deposit franchise raise deposits rates less when policy rates rise
  - They experience larger increases in deposit spreads and *deposit profitability*  $\rightarrow$  *skin in the game*
  - $\Rightarrow$  Banks with stronger franchise reduce risk-taking more in response to higher rates
- Empirics: Directly test our mechanism with supervisory loan-level data
  - Identification: monetary policy shocks interacted with *pre-determined deposit betas*
  - Control for credit demand with borrower-time fixed effects
  - ⇒ Banks with lower deposit betas cut risk more aggressively following rate hikes

### **Our Contributions**

- Theory: New mechanism links monetary policy, deposit franchise, and risk-taking
  - Banks with stronger deposit franchise raise deposits rates less when policy rates rise
  - They experience larger increases in deposit spreads and deposit profitability o skin in the game
  - $\Rightarrow$  Banks with stronger franchise reduce risk-taking more in response to higher rates
- Empirics: Directly test our mechanism with supervisory loan-level data
  - Identification: monetary policy shocks interacted with *pre-determined deposit betas*
  - Control for credit demand with borrower-time fixed effects
  - $\Rightarrow$  Banks with lower deposit betas cut risk more aggressively following rate hikes

#### Key contribution:

• This paper formalizes and tests a *new mechanism* for the risk-taking channel of monetary policy driven by endogenous bank incentives to protect the deposit franchise

### Literature Review

- Risk-Taking Channel of Monetary Policy: Interest Rate  $\uparrow \Longrightarrow \mathsf{Risk} ext{-Taking} \downarrow$ 
  - Rajan 06; Adrian & Shin 11; Maddaloni & Peydro 11; Borio & Zhu 12; Jiménez et al. 14; Ioannidou et al. 15; Dell'Ariccia et al. 17; Delis et al. 17; Altunbas et al. 18; Bonfim & Soares 18; Li et al. 24
  - <u>Our contribution:</u> Introduce deposit franchise as a *novel mechanism shaping how banks adjust risk* in response to policy rate changes

### Literature Review

- Risk-Taking Channel of Monetary Policy: Interest Rate  $\uparrow \implies$  Risk-Taking  $\downarrow$ 
  - Rajan 06; Adrian & Shin 11; Maddaloni & Peydro 11; Borio & Zhu 12; Jiménez et al. 14; Ioannidou et al. 15; Dell'Ariccia et al. 17; Delis et al. 17; Altunbas et al. 18; Bonfim & Soares 18; Li et al. 24
  - <u>Our contribution:</u> Introduce deposit franchise as a *novel mechanism shaping how banks adjust risk* in response to policy rate changes
- Deposit Franchise Influences Funding Costs and Lending Behaviour
  - Hannan & Berger 91; Neumark & Sharpe 92; Drechsler et al. 17, 21, 24; Xiao 20; Supera 21; Wang et al. 22; Choi & Rocheteau 23; Yankov 24; Egan et al. 25; Kho 25; Lu and Wu 25; Wang 25
  - Our contribution: Show that deposit franchise also affects risk-taking incentives

#### Literature Review

- Risk-Taking Channel of Monetary Policy: Interest Rate  $\uparrow \implies$  Risk-Taking  $\downarrow$ 
  - Rajan 06; Adrian & Shin 11; Maddaloni & Peydro 11; Borio & Zhu 12; Jiménez et al. 14; Ioannidou et al. 15; Dell'Ariccia et al. 17; Delis et al. 17; Altunbas et al. 18; Bonfim & Soares 18; Li et al. 24
  - <u>Our contribution:</u> Introduce deposit franchise as a *novel mechanism shaping how banks adjust risk* in response to policy rate changes
- Deposit Franchise Influences Funding Costs and Lending Behaviour
  - Hannan & Berger 91; Neumark & Sharpe 92; Drechsler et al. 17, 21, 24; Xiao 20; Supera 21; Wang et al. 22; Choi & Rocheteau 23; Yankov 24; Egan et al. 25; Kho 25; Lu and Wu 25; Wang 25
  - Our contribution: Show that deposit franchise also affects risk-taking incentives
- Bank Competition and Financial Stability
  - Keeley 90; Demsetz et al. 96; Allen & Gale 00, 04; Boyd & De Nicolo 05; Beck et al. 06;
     Martinez-Miera & Repullo 10; Jimenez et al. 13; Vives 16; Berger et al. 17; Carlson et al. 22
  - <u>Our contribution</u>: Isolate deposit-specific franchise not general competition as a key margin for monetary policy transmission to bank risk





• Deposit Franchise: banks' deposit rates are lower than the policy rate (Drechsler et al., 2021)

$$r_i^D = \beta_i^D r$$

- r is the policy rate,  $0 < \beta_i^D < 1$  is the bank's  $deposit\ beta$
- Deposit spread  $r-r_i^D=(1-\beta_i^D)r>0$



• Deposit Franchise: banks' deposit rates are lower than the policy rate (Drechsler et al., 2021)

$$r_i^D = \beta_i^D r$$

- r is the policy rate,  $0 < \beta_i^D < 1$  is the bank's *deposit beta*
- Deposit spread  $r-r_i^D=(1-\beta_i^D)r>0$
- Banks' Problem: Bank i solves the following profit maximization problem

$$\max_{ heta_i} \ p( heta_i) \left[ heta_i + r - r_i^D 
ight]$$

- Following Allen and Gale (2004),  $\theta_i$  is the *risk (loan risk premium)* of bank i
- $p(\theta_i)$  is the bank's *survival probability*
- A higher  $\theta_i$  increases the bank's profit margin  $(\theta_i + r r_i^D) \uparrow$ , at the cost of higher default risk  $(p(\theta_i) \downarrow)$

### **Predictions**

• **Prediction 1 (The Risk-Taking Channel):** banks with a positive deposit franchise (i.e.,  $\beta_i^D < 1$ ) take on less risk following increases in the policy rate,

$$\frac{\partial \theta_i}{\partial r} < 0.$$

 $\underline{Intuition:}\ r\uparrow \Longrightarrow \ \mathsf{deposit}\ \mathsf{spread}\ \uparrow \Longrightarrow \ \mathsf{profit}\ \uparrow \Longrightarrow \ \downarrow \ \mathsf{risk}\ \mathsf{to}\ \mathsf{preserve}\ \mathsf{the}\ \mathsf{deposit}\ \mathsf{franchise}$ 

### **Predictions**

• **Prediction 1 (The Risk-Taking Channel):** banks with a positive deposit franchise (i.e.,  $\beta_i^D < 1$ ) take on less risk following increases in the policy rate,

$$\frac{\partial \theta_i}{\partial r} < 0.$$

<u>Intuition</u>:  $r \uparrow \Longrightarrow$  deposit spread  $\uparrow \Longrightarrow$  profit  $\uparrow \Longrightarrow \downarrow$  risk to preserve the deposit franchise

 Prediction 2 (The Role of Deposit Franchise): banks with lower deposit betas (i.e., less pass-through, stronger franchises) reduce risk more strongly when interest rates increase,

$$\frac{\partial}{\partial (-\beta_i^D)} \left( \frac{\partial \theta_i}{\partial r} \right) < 0.$$

 $\underline{\text{Intuition:}}\ r\uparrow \Longrightarrow \ \text{deposit spread} \uparrow \text{more for low-beta (high-franchise) banks} \implies \text{risk} \downarrow \text{more}$ 

# Data



- Source: U.S. Federal Reserve Y-14 loan-level regulatory data
  - Covers large bank holding companies (BHCs), 2015–2024
  - Captures over two-thirds of all bank C&I lending
  - · Includes detailed information on the individual loans

#### • Structure:

· Multiple loans per borrower, across banks and time

#### · Variables of Interest

- · Loan-level: probability of default (PD), loan size, interest rate, collateral, maturity
- · Bank-level: deposits, capital ratio, size, profitability



- Source: U.S. Federal Reserve Y-14 loan-level regulatory data
  - Covers large bank holding companies (BHCs), 2015–2024
  - · Captures over two-thirds of all bank C&I lending
  - · Includes detailed information on the individual loans

#### • Structure:

· Multiple loans per borrower, across banks and time

#### · Variables of Interest

- · Loan-level: probability of default (PD), loan size, interest rate, collateral, maturity
- Bank-level: deposits, capital ratio, size, profitability
- Key Feature: Ex ante loan-level risk-taking measured using internal PDs



# **Prediction 1: The Risk-Taking Channel of Monetary Policy**

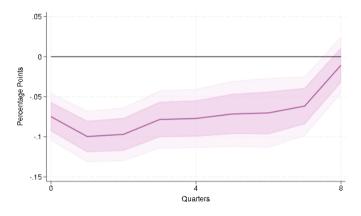
• Does the (standard) risk-taking channel of monetary policy hold in our data?

## **Prediction 1: The Risk-Taking Channel of Monetary Policy**

- Does the (standard) risk-taking channel of monetary policy hold in our data?
- For  $h = 0, \dots 8$ , we estimate a series of Jordà local projections from 2015 to 2024:

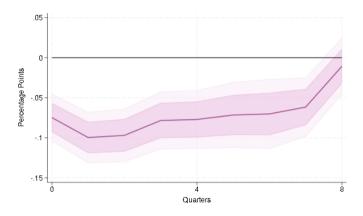
$$z_{k,i,t+h} = \alpha_i + \delta_b + \sum_{l=0}^{4} \beta_{h,l} \operatorname{Shock}_{t-l} + \varepsilon_{k,i,t+h}$$
 (1)

- $z_{k,i,t+h}$ : ex ante risk (PD) for loan k by bank i
- Shock $_{t-1}$ : monetary policy shock (Jarociński & Karadi, 2020)
- α<sub>i</sub>: bank fixed effects
- $\delta_b$ : borrower fixed effects


## **Prediction 1: The Risk-Taking Channel of Monetary Policy**

- Does the (standard) risk-taking channel of monetary policy hold in our data?
- For  $h = 0, \dots 8$ , we estimate a series of Jordà local projections from 2015 to 2024:

$$z_{k,i,t+h} = \alpha_i + \delta_b + \sum_{l=0}^{4} \beta_{h,l} \operatorname{Shock}_{t-l} + \varepsilon_{k,i,t+h}$$
 (1)


- $z_{k,i,t+h}$ : ex ante risk (PD) for loan k by bank i
- Shock $_{t-1}$ : monetary policy shock (Jarociński & Karadi, 2020)
- α<sub>i</sub>: bank fixed effects
- $\delta_b$ : borrower fixed effects
- IRF is the sequence  $\{\beta_{h,0}\}_{h=0}^8$  which traces the response of z at t+h to a shock at t

# **Risk-Taking Declines After A Contractionary Monetary Policy Shock**



• Confirm model prediction and consistent with findings in the literature

# Risk-Taking Declines After A Contractionary Monetary Policy Shock



- · Confirm model prediction and consistent with findings in the literature
- Innovation relative to empirical literature on the risk-taking channel in the US:
  - (i) Loan-level PDs (ii) Borrower fixed effects (iii) Dynamic effects

## **Prediction 2: The Role of the Deposit Franchise**

• Prediction: Banks with stronger deposit franchises reduce risk more when rates rise

• Empirical requirement: Need a measure of each bank's exposure via deposit franchise

## **Prediction 2: The Role of the Deposit Franchise**

• Prediction: Banks with stronger deposit franchises reduce risk more when rates rise

- Empirical requirement: Need a measure of each bank's exposure via deposit franchise
- Model guidance: This exposure is captured by the deposit beta
- We can compute this!

## **Computing the Bank-Level Deposit Beta**

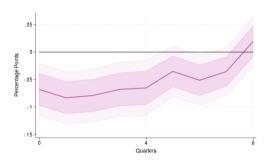
- We follow the approach in Drechsler et al. (2021) to calculate the deposit beta
- Formally, we estimate the following regression over a pre-period (1984-2014):

$$\Delta \mathsf{DepIntExp}_{\mathit{it}} = \alpha_{\mathit{i}} + \sum_{\tau=0}^{3} \beta_{\mathit{i},\tau}^{\mathit{D}} \Delta \mathsf{FedFunds}_{t-\tau} + \varepsilon_{\mathit{it}}$$

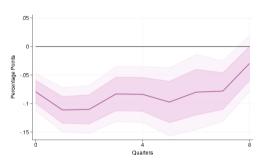
- $\Delta$ DepIntExp $_{it}$ : change in bank i's deposit interest expense rate from t to t+1
- $\Delta$ FedFunds $_t$ : change in the Fed funds rate from t to t+1
- $\alpha_i$ : bank fixed effects
- We define the pre-period bank-level deposit beta as the sum of the beta coefficients:

$$\mathsf{DepositBeta}_i = \sum_{\tau=0}^3 \beta_{i,\tau}^D$$

• Pre-period betas important for identification but we also find they predict in-sample betas


# **Balance Across High and Low-Deposit Beta Banks**

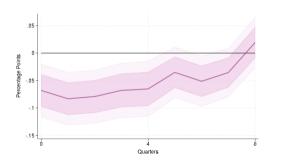
| Variable                            | High beta | Low beta | N (High / Low) | $ \Delta_{IW} $ |
|-------------------------------------|-----------|----------|----------------|-----------------|
| Bank-level variables                |           |          |                |                 |
| Tier 1 capital ratio                | 0.133     | 0.130    | 492 / 492      | 0.104           |
| Total assets (\$M)                  | 566,238   | 502,107  | 492 / 492      | 0.063           |
| Net income/assets                   | 0.006     | 0.007    | 492 / 492      | 0.090           |
| Deposits/assets                     | 0.781     | 0.805    | 492 / 492      | 0.320           |
| Loan-level variables                |           |          |                |                 |
| Probability of Default              | 2.41      | 2.14     | 2.15M / 2.71M  | 0.022           |
| Probability of Default ( $< 25\%$ ) | 1.38      | 1.44     | 2.11M / 2.69M  | 0.016           |
| Probability of Default ( $< 5\%$ )  | 0.80      | 0.83     | 1.98M / 2.53M  | 0.016           |
| Loan Size (\$M)                     | 8.84      | 8.42     | 2.15M / 2.71M  | 0.009           |
| Interest rate                       | 4.06      | 4.15     | 1.30M / 2.05M  | 0.021           |
| Collateralized loan                 | 0.73      | 0.83     | 2.15M / 2.71M  | 0.168           |
| Loan maturity (< 20 years)          | 5.25      | 5.58     | 1.84M / 2.35M  | 0.075           |


<sup>•</sup> Imbens-Wooldridge normalised difference  $|\Delta_{IW}| < 0.25$  shows sufficient comparability

# Comparing High- and Low-Beta Banks Risk-Taking Responses

• We re-estimate (1) for the high- and low-beta banks




Panel A: High Deposit Beta



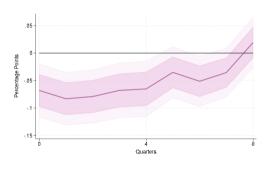
Panel B: Low Deposit Beta

## Comparing High- and Low-Beta Banks Risk-Taking Responses

• We re-estimate (1) for the high- and low-beta banks



.15 - Quarters


Panel A: High Deposit Beta

Panel B: Low Deposit Beta

• Consistent with model prediction, strongest de-risking response to rate hikes comes from banks with the most valuable deposit franchises (low betas) in Panel B

## Comparing High- and Low-Beta Banks Risk-Taking Responses

• We re-estimate (1) for the high- and low-beta banks



Panel A: High Deposit Beta

Panel B: Low Deposit Beta

- Consistent with model prediction, strongest de-risking response to rate hikes comes from banks with the most valuable deposit franchises (low betas) in Panel B
- But differences in credit demand across bank groups could confound this comparison

# Formally Testing the Role of the Deposit Franchise

• For  $h = 0, \dots 8$ , we estimate a series of Jordà local projections from 2015 to 2024:

$$z_{k,i,t+h} = \alpha_i + \delta_{b,t} + \sum_{l=0}^{4} \lambda_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{DepositBeta}_i) + \varepsilon_{k,i,t+h} \tag{2}$$

## Formally Testing the Role of the Deposit Franchise

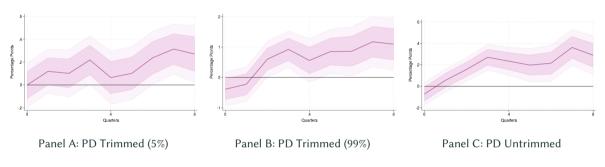
• For h = 0, ... 8, we estimate a series of Jordà local projections from 2015 to 2024:

$$z_{k,i,t+h} = \alpha_i + \delta_{b,t} + \sum_{l=0}^{4} \lambda_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{DepositBeta}_i) + \varepsilon_{k,i,t+h} \tag{2}$$

- Identification:
  - Shocks: monetary policy surprises purged of information effects
  - Exposures: pre-determined (1984-2014) variation across banks in deposit beta
  - Credit demand: control for borrower-time fixed effects

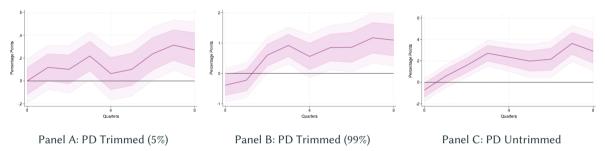
## Formally Testing the Role of the Deposit Franchise

• For h = 0, ... 8, we estimate a series of Jordà local projections from 2015 to 2024:


$$z_{k,i,t+h} = \alpha_i + \delta_{b,t} + \sum_{l=0}^{4} \lambda_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{DepositBeta}_i) + \varepsilon_{k,i,t+h} \tag{2}$$

- Identification:
  - Shocks: monetary policy surprises purged of information effects
  - Exposures: pre-determined (1984-2014) variation across banks in deposit beta
  - Credit demand: control for borrower-time fixed effects
- Prediction:  $\lambda_{h,0} > 0$ 
  - Banks with weaker deposit franchises (higher betas) reduce risk less in response to hikes

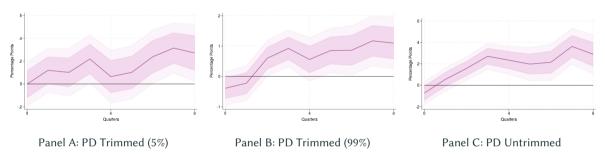
## Risk-Taking Falls Less for Banks with Higher Deposit Beta





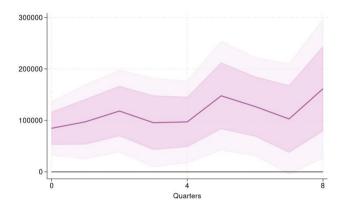



## Risk-Taking Falls Less for Banks with Higher Deposit Beta






- Consistent with model prediction, after a contractionary monetary policy shock, loan default risk declines less at banks with weaker deposit franchises (higher betas)
- · Result is robust across trimmed and untrimmed samples and new loans only


## Risk-Taking Falls Less for Banks with Higher Deposit Beta





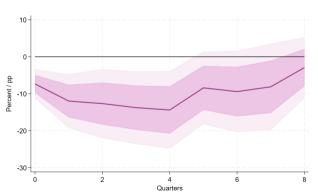
- Consistent with model prediction, after a contractionary monetary policy shock, loan default risk declines less at banks with weaker deposit franchises (higher betas)
- Result is robust across trimmed and untrimmed samples and new loans only
- · How much can we trust PDs?

# Alternative Measure of Risk-Taking: Ex Post Charge-Offs



- Ex post charge-offs worse for high beta banks (similar to ex ante probability of default)
- Consistent with Beyhaghi et al. (JF, Forthcoming) who verify that bank PDs predict interest rates and ex-post loan performance

# **Deposit Franchise and Deposit Profitability**


• Do the pre-period deposit betas actually influence deposit profitability?

$$\mathsf{Deposit} \ \mathsf{RoA} \equiv \frac{\mathsf{Profits} \ \mathsf{from} \ \mathsf{Deposits}}{\mathsf{Assets}} = \frac{\mathit{rD} - \mathit{r}^{\mathit{D}} \mathit{D}}{\mathit{A}}$$

# **Deposit Franchise and Deposit Profitability**

• Do the pre-period deposit betas actually influence deposit profitability?

Deposit RoA 
$$\equiv \frac{\text{Profits from Deposits}}{\text{Assets}} = \frac{rD - r^DD}{A}$$



• Banks with weaker deposit franchise (high deposit beta) see worse deposit RoA

# Alternative Measure of Deposit Franchise (Deposit-HHI) and Risk-Taking

• Are deposit betas the only way to capture the deposit franchise?

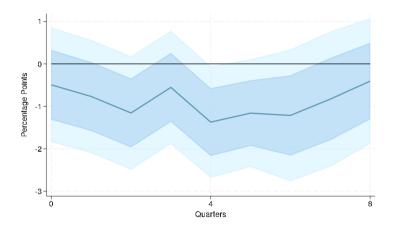
$$z_{k,i,t+h} = lpha_i + \delta_{b,t} + \sum_{l=0}^4 \lambda_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{HHI}_i) + \varepsilon_{k,i,t+h}$$

# Alternative Measure of Deposit Franchise (Deposit-HHI) and Risk-Taking

• Are deposit betas the only way to capture the deposit franchise?

$$z_{k,i,t+h} = \alpha_i + \delta_{b,t} + \sum_{l=0}^4 \lambda_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{HHI}_i) + \varepsilon_{k,i,t+h}$$

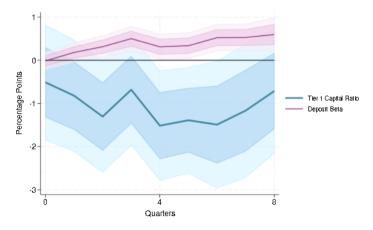
• Banks with stronger deposit franchise (high HHI) reduce risk-taking more


## The Role of Bank Capital

- Many existing mechanisms (e.g., search-for-yield, moral hazard) indicate that a bank's
   capital ratio is a key driver of risk-taking responses in the cross-section (Dell'Ariccia et al., 2017)
- Local projection specification as before:

$$z_{k,i,t+h} = \alpha_i + \delta_{b,t} + \sum_{l=0}^4 \gamma_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{CapitalRatio}_{i,t-l-1}) + \varepsilon_{k,i,t+h}$$

- Prediction:  $\gamma_h < 0$ 
  - Less capitalized banks face stronger incentives to reach for yield and restore profitability


# **Bank Capital and Risk-Taking**



• Consistent with Dell'Ariccia et al. (JF, 2017), after a rate hike, banks with higher capital ratios reduce loan risk more

## Deposit Franchise and Bank Capital Mechanisms Co-Exist

$$z_{k,i,t+h} = \alpha_i + \delta_{b,t} + \sum_{l=0}^{4} \lambda_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{DepositBeta}_i) + \sum_{l=0}^{4} \gamma_{h,l} \cdot (\mathsf{Shock}_{t-l} \times \mathsf{CapitalRatio}_{i,t-l-1}) + \varepsilon_{k,i,t+h}$$



## Portfolio-level Risk Adjustments

• Do banks adjust their overall balance sheet composition in response to monetary policy?

$$\mbox{Risky Asset Share} \equiv \frac{\mbox{Assets Assigned 1250\% Risk Weight}}{\mbox{Assets}}$$

## Portfolio-level Risk Adjustments

• Do banks adjust their overall balance sheet composition in response to monetary policy?



 $\bullet\,$  Banks with weaker deposit franchise increase their holdings of the riskiest assets more



#### **Conclusion and Future Work**

- We study how deposit franchise shapes the risk-taking channel of monetary policy
  - · Banks with stronger deposit franchises respond to rate hikes by reducing risk more
  - This is due to an increase in deposit profitability, which raises the cost of taking risk
- Empirical analysis with loan-level Y-14 data and internal PDs
  - Robust heterogeneity in risk response across banks with different deposit betas
  - This mechanism co-exists with the capital mechanism highlighted in the existing literature
- Implication:
  - How monetary policy transmits to financial stability depends on banks' deposit franchise

#### **Conclusion and Future Work**

### • We study how deposit franchise shapes the risk-taking channel of monetary policy

- · Banks with stronger deposit franchises respond to rate hikes by reducing risk more
- This is due to an increase in deposit profitability, which raises the cost of taking risk

#### • Empirical analysis with loan-level Y-14 data and internal PDs

- · Robust heterogeneity in risk response across banks with different deposit betas
- · This mechanism co-exists with the capital mechanism highlighted in the existing literature

#### • Implication:

· How monetary policy transmits to financial stability depends on banks' deposit franchise

#### • Future Work:

- 1. Decomposing the risk adjustment: closing riskier loans, changing existing loans, or new loans?
- 2. Borrower response (real effects): how do borrowers react (e.g., less risky investments?)
- 3. Robustness checks: many to do!





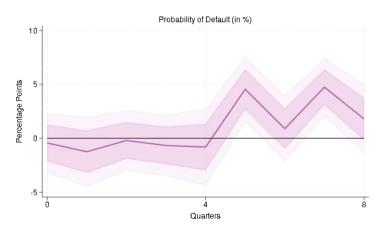
• We can decompose a bank's profits into

$$p(\theta_i) \left[ \theta_i + r - r_i^D \right] = \underbrace{p(\theta_i)\theta_i}_{\text{loan profits}} + \underbrace{p(\theta_i)(r - r_i^D)}_{\text{deposit profits}}$$

Suppose that the bank's problem is repeated for an infinite number of periods. If the bank is
risk-neutral and discounts profits at the risk-free rate r

$$(\text{Deposit Franchise Value})_i = \frac{p(\theta_i)(r - r_i^D)}{r} = p(\theta_i)(1 - \beta_i^D)$$

· Low-beta banks have larger deposit franchise values


$$\frac{\partial (\mathsf{Deposit \ Franchise \ Value})_i}{\partial (-\beta_i^D)} = \underbrace{-p'(\theta_i)}_{>0} \underbrace{\frac{\partial \theta_i}{\partial \beta_i^D}}_{>0} (1-\beta_i^D) + p(\theta_i) > 0$$

# **Summary Statistics**



|                                     | N    | Mean    | 25 <sup>th</sup> | 75 <sup>th</sup> | Std. Dev. |
|-------------------------------------|------|---------|------------------|------------------|-----------|
| Loan-level variables                |      |         |                  |                  |           |
| Probability of Default              | 4.9M | 2.26    | 0.17             | 1.38             | 8.83      |
| Probability of Default ( $< 25\%$ ) | 4.8M | 1.42    | 0.17             | 1.28             | 2.83      |
| Probability of Default ( $< 5\%$ )  | 4.5M | 0.82    | 0.15             | 1.07             | 0.94      |
| Loan size (\$M)                     | 4.9M | 8.60    | 0                | 5.52             | 30.64     |
| Interest rate                       | 3.4M | 4.11    | 2.63             | 5.20             | 2.88      |
| Collateralized loan                 | 4.9M | 0.78    | 1                | 1                | 0.41      |
| Loan maturity ( $< 20$ years)       | 4.2M | 5.43    | 3.35             | 6.99             | 3.18      |
| Bank-level variables                |      |         |                  |                  |           |
| Tier 1 capital ratio                | 984  | 0.13    | 0.11             | 0.14             | 0.03      |
| Equity/assets                       | 984  | 0.11    | 0.09             | 0.12             | 0.02      |
| Total assets (\$M)                  | 984  | 534,173 | 151,148          | 466,138          | 714,751   |





• Results are qualitatively similar to using all loans but noisier due to reduced sample size

## **Determinants of Probability of Default**



#### Independent Variable: Probability of Default

|                               | (1)       | (2)       | (3)       | (4)       |
|-------------------------------|-----------|-----------|-----------|-----------|
| Interest Rate                 | 0.066***  | 0.066***  | 0.109***  | 0.108***  |
|                               | (0.010)   | (0.011)   | (0.015)   | (0.016)   |
| Loan Size (\$M)               | -0.002*** | -0.002*** | -0.002*** | -0.002*** |
|                               | (0.000)   | (0.000)   | (0.000)   | (0.000)   |
| Collateralized Loan           | 0.354***  | 0.368***  | 0.362***  | 0.377***  |
|                               | (0.062)   | (0.059)   | (0.057)   | (0.049)   |
| Loan Maturity ( $< 20$ years) | -0.010*   | -0.007    | -0.004    | -0.001    |
|                               | (0.005)   | (0.005)   | (0.005)   | (0.005)   |
| Constant                      | 0.437***  | 0.415***  | 0.220***  | 0.197***  |
|                               | (0.071)   | (0.066)   | (0.072)   | (0.064)   |
| Bank FE                       | No        | Yes       | No        | Yes       |
| Time FE                       | No        | No        | Yes       | Yes       |
| Observations                  | 2,563,231 | 2,563,231 | 2,563,231 | 2,563,231 |
| R-squared                     | 0.053     | 0.089     | 0.078     | 0.116     |