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1 Introduction

In recent years, variations in economic uncertainty have become an increasingly

important source of aggregate fluctuations. In times of high uncertainty such as the

Great Recession and the COVID-19 crisis, government debts (e.g., reserves and trea-

sury bonds) provide nominal insurance against idiosyncratic risk. Following an abrupt

rise in uncertainty, investors reallocate their resources from productive capital to safe

government bonds for precautionary motives. Such “flight-to-safety” episodes feature

sharp declines in the demand for capital, which leads to recessions in investment. Ad-

ditionally, in an environment where short-term output is demand-determined, height-

ened uncertainty depresses effective demand and triggers recessions in consumption

and output.

In this paper, we highlight a novel transmission mechanism of uncertainty shocks

through portfolio reallocations. To this end, we build a tractable New Keynesian model

with idiosyncratic risk and “flight-to-safety” behaviors. In our model, capital and gov-

ernment bonds are imperfect substitutes as they differ in their risk exposures. Capital

is more productive but subject to idiosyncratic return risk, while government bonds are

unproductive but nominally safe. As uncertainty about the return on capital increases,

the private sector hoards more government debts as consumption insurance, which we

refer to as “flight-to-safety.”

Importantly, the real value of nominal government bonds is directly linked to the

price level. In the presence of nominal rigidity, the value of existing government debts

adjusts slowly to shocks through changes in the price level. Consequently, movements

in demand for safe bonds are disconnected from the bond price in the short run. Since

changes in the bond price cannot accommodate uncertainty-induced fluctuations in

household portfolios, uncertainty shocks instead result in overshooting of capital val-

ues. In the New Keynesian model where short-term output is demand-determined, a

decline in the capital price lowers household wealth, which initiates a general decline

in aggregate economic activities.

We further show that our model generates realistic business cycle co-movements

following uncertainty shocks. Specifically, our model predicts recessions in investment,
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consumption, and output, and disinflation after uncertainty rises, as have been iden-

tified by previous papers (e.g., Bachmann, Elstner and Sims, 2013; Basu and Bundick,

2017; Carriero, Clark and Marcellino, 2018). Further, following a positive uncertainty

shock, the economy in our model exhibits both heightened risk premium and low out-

put, an important disconnect highlighted by Caballero and Simsek (2021).

The second focus of this paper is on stabilization policies. To stabilize the economy

after uncertainty shocks, the government needs to either expand the supply of safe as-

sets or suppress the demand for safe assets. On the supply side, traditional monetary

policy that operates through interest rate changes can only move the value of nominal

government bonds slowly through (dis)inflation when the quantity of bonds is con-

trolled separately by the fiscal authority. In contrast, the government can rapidly move

the supply of safe assets using fiscal policy.

On the demand side, it is sometimes believed the central bank can push households

into holding riskier assets simply by adjusting the risk-free rate. While it is true in New

Keynesian models without safe assets (e.g., Basu and Bundick, 2017), we show that the

result breaks down when safe assets are in a positive net supply. In particular, the effect

of interest rate policy will depend crucially on the fiscal responses it induces. Behind

this result is a simple but yet underappreciated intuition. Households’ demand for

safe assets depends on the level of uncertainty and returns on available assets. When

interest rates drop, the interest payments on existing bonds fall simultaneously. With-

out supporting tax policies, interest rates cuts result in less bond issuance (decline in

seigniorage income), which inflate the real return on bonds and offset the impact of

interest rate policy on the real return on government bonds. We formalize this intuition

by showing exactly how household portfolio decisions depend on (future) uncertainty

and government policies.

To better understand the importance of the portfolio choice channel, we compare

our model to an environment where government bonds are in zero net supply. Without

having to fund interest payments on its debts, the government can freely vary the risk-

free rate via monetary policy. Indeed, in this case, we recover the classical result that

the central bank can stabilize the economy without any fiscal policy if the policy rate

tracks the natural rate perfectly. Furthermore, even under the same monetary policy re-
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sponses, the effects of uncertainty shocks are significantly amplified in the model with

government bonds. The amplification result suggests that the overshooting mechanism

has a major role in shaping macroeconomic dynamics following uncertainty shocks.

We then proceed to study how monetary-fiscal policy should be utilized to stabilize

uncertainty-induced fluctuations in household portfolios. In response to uncertainty

shocks, the fiscal authority can react by adjusting either lump-sum taxes or distor-

tionary taxes.1 While both types of policy can potentially stabilize the economy in the

short run, they have distinct implications for welfare and longer-term economic out-

comes. Importantly, lump-sum taxes are non-distortionary, and have the potential of

ameliorating the impact of nominal rigidity without distorting long-run economic out-

comes. Nevertheless, distortionary taxes have more profound impact on households’

portfolio choices and can lead to different steady-state equilibria. Therefore, such taxes

are more suitable for correcting incomplete markets frictions which cause long-run de-

viations from (constrained) efficient allocations. Indeed, by obtaining analytical solu-

tions to the planner’s problem, we show how coordinated monetary-fiscal policy that

involves both fiscal tools can replicate constrained-efficient allocations.

Related Literature. First, our paper belongs to the recent literature on the transmis-

sion of uncertainty shocks in New Keynesian models.2 Ilut and Schneider (2014) and

Basu and Bundick (2017) study uncertainty-induced aggregate demand recessions in

models where government bonds are in zero net supply. While these papers success-

fully capture the economic downturns resulting from high uncertainty, the household

portfolio choice channel highlighted in our paper is missing. Christiano, Motto and

Rostagno (2014) show that high uncertain can negatively affect credit supply through a

financial accelerator mechanism. Leduc and Liu (2016) investigate the effects of uncer-

tainty shocks from the perspectives of search frictions and employment relationships.

1This is sometimes labeled as “monetary stabilization” (e.g., in Bayer et al., 2019) since it is typically
assumed that taxes adjust passively to accommodate interest rate changes so the government budget
constraint is satisfied. However, it can be confusing because at the heart of such policies is the distor-
tionary effects of taxes on household portfolios.

2In addition to the New Keynesian models, the literature on uncertainty shocks has investigated
the “wait-and-see” effect (Bloom, 2009; Bloom et al., 2018) and various types of interactions between
uncertainty and financial frictions (Gilchrist et al., 2014; Alfaro et al., 2018; Arellano et al., 2019; Elenev
et al., 2021; Di Tella, 2017; Bianchi et al., 2018).

4



Fernández-Villaverde et al. (2015) study the impact of fiscal policy volatility in an en-

vironment with government bonds. However, since they study a representative-agent

economy where Ricardian equivalence holds, the effect of non-distortionary fiscal pol-

icy studied in our paper is absent. Schaab (2020) studies the transmission of aggregate

(macro) uncertainty shocks in a New Keynesian model with idiosyncratic labor market

risk. In contrast, our paper focuses on shocks to idiosyncratic (micro) uncertainty.

More closely related to our paper is Bayer et al. (2019), where they examine the inter-

play between idiosyncratic income risk and household portfolio decisions in a quanti-

tative HANK model. Broadly speaking, both papers share the common theme that un-

certainty leads to portfolio rebalancing and aggregate fluctuations, but the types of risk

and the mechanisms generating imperfect substitutability between capital and govern-

ment bonds are different. Bayer et al. (2019) follows the Aiyagari (1994) tradition and

study idiosyncratic labor income risk faced by the households, whereas in this paper, we

focus on idiosyncratic investment risk as in Angeletos (2007) and Bloom (2009). In Bayer

et al. (2019), capital stock is illiquid compared to bonds, so households hold for bonds

for better consumption smoothing,3 while in our paper, capital bears more idiosyncratic

risk and households hold bonds as an insurance.4 In this regard, our paper offers a new

mechanism that also contributes to the empirical patterns established in their paper. In

addition, we closely examine the roles of different policy tools in stabilizing aggregate

demand and characterize the optimal monetary-fiscal policy, which are complemen-

tary to the distributional results in Bayer et al. (2019). Finally, our model features more

tractability and provides a more transparent display of different mechanisms.

Moreover, we echo the extensive HANK literature that emphasizes the role of fiscal

policy when Ricardian equivalence breaks down under incomplete markets. For ex-

ample, Kaplan, Moll and Violante (2018), Acharya and Dogra (2020), and Caramp and

Silva (2021) have investigated fiscal-monetary interactions in New Keynesian models

with technology and monetary shocks. Our paper contributes to this literature by high-

lighting the importance of fiscal policy in environments with uncertainty shocks and

3Recent papers that jointly study the liquidity service of government papers and monetary transmis-
sions include Del Negro et al. (2017), Kiyotaki and Moore (2019) and Szőke (2019).

4In a similar vein, recent works by Di Tella (2020) and Brunnermeier, Merkel and Sannikov (2022)
model government papers as a store of value in uncertain environments.
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portfolio reallocations.

Our paper also links with the literature on safe asset shortage and macroeconomic

dynamics (e.g., Caballero and Farhi, 2018; Acharya and Dogra, 2022). Distinct from

the earlier studies, our mechanism does not rely on a binding zero lower bound on

the nominal rate. We show that the scarcity of safe assets matters in the presence of

nominal rigidity and uncertainty shocks, even when the economy is away from safety

and liquidity traps.

Our analysis of optimal policy connects to the burgeoning literature on the opti-

mal design of monetary-fiscal policy in models with nominal rigidity and incomplete

markets (e.g., Acharya, Challe and Dogra, 2020; Bhandari et al., 2021; Le Grand, Martin-

Baillon and Ragot, 2021; Dávila and Schaab, 2022; McKay and Wolf, 2022). Notably, the

existing literature mostly builds on one-asset models and ignores the portfolio choice

between risky and safe assets,5 whereas in this paper, we carefully study the implica-

tions of household portfolio adjustment. Our paper also focuses on different aspects

of welfare calculation from the existing literature. Specifically, we draw our attention

to the aggregate demand externality created by incomplete markets while abstracting

away from wealth inequality and distributional efficiency.

Our model also relates to the literature on money as a store of value against idiosyn-

cratic risk. In this literature, money has similar functionalities as nominal government

bonds as in our paper. In particular, we share the same interest with Di Tella (2020)

and Brunnermeier, Merkel and Sannikov (2022) in showing that the existence of nomi-

nally safe assets have important implications for monetary transmissions. In addition,

we demonstrate how valuations of safe assets interact with nominal rigidity and how

stabilization policies work differently with and without nominal government debts.

With regard to the methodology, we build on recent developments in continuous-

time methods in macroeconomics and finance. Specifically, our formulation of house-

hold portfolio choice problem resembles those in Brunnermeier and Sannikov (2014,

2016), while our modeling of price adjustment frictions is along the same lines as Ka-

plan, Moll and Violante (2018).

5A notable expectation is Bilbiie and Ragot (2021), who study optimal monetary policy when house-
holds solve a portfolio problem between money, bond and capital. Unlike in our paper, the portfolio
problem is motivated by household liquidity shocks and infrequent participation in financial markets.
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Outline. Section 2 outlines the baseline model and our main numerical results. Sec-

tion 3 discusses the transmission mechanisms of uncertainty shocks in our environ-

ment. Section 4 compares the baseline model with a model without safe government

bonds. Section 5 studies the design of fiscal policy. Section 6 presents an extension with

long-term government bonds. Section 7 concludes.

2 Model

In this section, we outline our baseline model. The model is based on the safe asset

model of Brunnermeier, Merkel and Sannikov (2022) in which households solve a port-

folio choice problem between idiosyncratically risky capital and safe nominal govern-

ment bonds. The amount of idiosyncratic risk that agents face is time-varying. In times

of high risk, households’ demand for safe government bonds increases, which gener-

ates deflation pressures. We augment this model by introducing nominal rigidities in

the form of price adjustment costs as in Rotemberg (1982). Nominal rigidities prevent

the immediate revaluation of nominal safe assets, so that deflationary pressures from

flight to safety create a demand shortage.

2.1 Setup

Overview. We study a continuous-time, infinite-horizon economy. The economy is

populated by a continuum of households who own (risky) physical capital and (safe)

government bonds. There exists another continuum of intermediate goods firms who

rent capital from households to produce differentiated intermediate goods and sell

them to a competitive sector of final goods firms. Final goods firms combine inter-

mediate goods to a final good using a CES production technology.

The model features two key frictions: (1) incomplete markets limit idiosyncratic risk

sharing by households and (2) intermediate goods firms face nominal price adjustment

frictions.

We use the final good as a numeraire. That is, if the price level is Pt, one dollar is

worth 1/Pt in terms of final goods.

7



Households and Assets. There is a continuum of households indexed by i ∈ [0, 1].

All households have logarithmic preferences over consumption streams with identical

time preference rate ρ,

E

[∫ ∞

0
e−ρt log ci

tdt
]

. (1)

Each household manages physical capital that produces a flow of capital services

ui
tk

i
tdt which the household rents out to intermediate goods firms at rental price pR

t

(per unit of capital services). Here, ki
t is the quantity of capital managed by household i

at time t and ui
t is the utilization rate chosen by the household. In addition to providing

capital services, capital holdings may be subject to taxation by the government and they

entitle households to profit distributions from intermediate goods firms to be specified

below. Capital of household i evolves according to

dki
t =

[
Φ(ιit)− δ(ui

t)
]

︸ ︷︷ ︸
:=g(ui

t,ι
i
t)

ki
tdt + σ̃tki

tdZ̃i
t + d∆K,i

t , (2)

where d∆K,i
t represents agent i’s market transactions in physical capital, ιitk

i
tdt are the

agent’s physical investment expenditures (in final output goods), Φ(·) is an increasing

and concave function that captures adjustment costs in capital accumulation, δ(·) is an

increasing and convex function that makes capital depreciation dependent on utiliza-

tion ui
t, and Z̃i is an agent-specific Brownian motion that is i.i.d. across households i. Z̃i

introduces agent-specific idiosyncratic risk. σ̃t is an exogenous process that governs the

magnitude of idiosyncratic risk faced by agents. We assume that σ̃t is driven by some

(aggregate) Brownian motion Z that is independent of all the idiosyncratic Z̃i processes.

The first key friction in the model is that households are unable to share idiosyn-

cratic risk due to market incompleteness. While they are allowed to trade physical

capital and government bonds, they cannot write financial contracts contingent on in-

dividual Z̃i histories. As a consequence, all households have to bear the idiosyncratic

risk inherent in their physical capital holdings.

We formulate the decision problem of household i as a standard consumption-

portfolio choice problem that does not make explicit reference to the capital trading

process d∆K,i
t as a choice variable and instead works with the shares of net worth in-
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vested in capital and bonds, respectively.6 Let ni
t be the net worth of household i and

let θi
t be the share of net worth invested in bonds. Then household i’s net worth evolves

according to

dni
t = ni

t

[
θi

tdRB
t + (1− θi

t)dRK,i
t (ui

t, ιit)
]
− ci

tdt, (3)

where dRB
t and dRK,i

t (·, ·) are the infinitesimal return processes for bonds and capital,

respectively. We describe these returns in the following.

Let qK
t denote the market price of capital and let qB

t := Bt
Pt

1
Kt

the real value of the

total bond stock in the economy per unit of aggregate capital. Here, Kt :=
∫ 1

0 ki
tdi is the

capital stock and Bt is the nominal face value of the outstanding stock of government

bonds. Bonds make nominal interest payments to their holders at floating rate it set by

the government. We assume that Bt evolves locally deterministically,

dBt = µB
t Btdt,

for reasons that we discuss below when specifying government policy. We postulate

that qB
t and qK

t follow a generic Ito evolution

dqB
t = µ

q,B
t qB

t dt + σ
q,B
t qB

t dZt, dqK
t = µ

q,K
t qK

t dt + σ
q,K
t qK

t dZt

with drifts µ
q,B
t , µ

q,K
t and (aggregate) volatility loadings σ

q,B
t , σ

q,K
t that are determined

in equilibrium. The return on bonds is simply the interest income minus inflation

dRB
t = itdt +

d (1/Pt)

1/Pt

=
(

it − µB
t + gt + µ

q,B
t

)
dt + σ

q,B
t dZt (4)

where the second equality uses the identity 1/Pt = qB
t Kt/Bt by definition of qB

t .7 Im-

portantly, the return on bonds is not subject to idiosyncratic risk.

6The trading process d∆K,i
t can be backed out ex post from the solution to this portfolio problem.

7We also use here dKt = gtKtdt with gt :=
∫ 1

0 g(ui
t, ιit)k

i
tdi/Kt, which follows readily from aggregat-

ing the individual capital evolutions (2).
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The return on capital for household i is

dRK,i
t (ui

t, ιit) =

dividend yield︷ ︸︸ ︷(
pR

t ui
t

qK
t
− ιit

qK
t
+

ωt

qK
t
− τK

t

)
dt+

capital gain︷ ︸︸ ︷
d
(

qK
t

(
ki

t − ∆K,i
t

))
qK

t

(
ki

t − ∆K,i
t

)
=

(
pR

t ui
t − ιit

qK
t

+
ωt

qK
t
− τK

t + g(ui
t, ιit) + µ

q,K
t

)
dt + σ̃tdZ̃i

t + σ
q,K
t dZt. (5)

The dividends per unit of capital consist of four parts: revenues from renting out cap-

ital to intermediate goods firms, pR
t ut, physical reinvestment in the capital stock, −ιt,

profit transfers from intermediate goods firms, ωt, and taxes levied by the government,

−τKqt. The second term in the first line corresponds to the capital gains, which are the

result of both changes in the capital price qK
t and changes in the quantity of capital be-

fore market transactions (ki
t − ∆K,i

t ) due to investment, depreciation, and idiosyncratic

shocks.

In total, household i’s problem is to choose consumption {ct}∞
t=0, capital utilization

{ut}∞
t=0, physical investment {ιt}∞

t=0, and the bond portfolio share {θt}∞
t=0 in order to

maximize utility (1) subject to the net worth evolution (3), where in the latter the return

expressions are given by equations (4) and (5). When making decisions, the household

takes initial net worth ni
0 and the processes {pR

t , qB
t , qK

t , gt, ωt, it, τK
t , µB

t } as given.

Intermediate Goods Firms. There is a continuum of monopolistically competitive in-

termediate goods firms indexed by j ∈ [0, 1]. Each intermediate goods firm operates a

linear production technology

yj
t = ak̂j

t

for a differentiated good of variety j. Here, a denotes the level of productivity and k̂j
t

are effective capital input services rented from households at (unit) rental price pR
t .

Intermediate goods firms quote their output prices Pj
t in terms of the nominal unit.

The second of the two key frictions in the model is that price adjustments are subject

to adjustment costs as in Rotemberg (1982). Specifically, the nominal price Pj
t of firm j

evolves according to

dPj
t = π

j
tP

j
t dt
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and the firm incurs a flow adjustment cost κ
2

(
π

j
t

)2
Ytdt when choosing price inflation

π
j
t, where κ > 0 is a parameter and Yt is the aggregate output.

In total, the flow profit of firm j is given by

v
j
tdt :=

Pj
t

Pt
ak̂j

t − pR
t k̂j

t −
κ

2

(
π

j
t

)2
Yt

dt. (6)

The firm chooses a path of price inflation π
j
t and capital inputs k̂j

t to maximize the

present value of flow profits

E

[∫ ∞

0
ξtv

j
tdt
]

subject to the demand for intermediate good variety j (equation (8) below). Future

profits are discounted using the stochastic discount factor ξt = e−ρt 1
Ct

where Ct =∫ 1
0 ci

tdi is the aggregate household consumption.8

We assume that the both the profit flow v
j
t of intermediate goods firms and the price

adjustment costs κ
2

(
π

j
t

)2
Yt are rebated to the household proportionally to their capital

holdings.9 The transfer received by households per unit of capital is

ωt =

∫ 1

0

[
v

j
t +

κ

2

(
π

j
t

)2
Yt

]
dj

Kt
. (7)

We consider a symmetric equilibrium where the price paths are the same for all

firms (π j
t = πt). In Appendix A, we present a detailed derivation of the New Keynesian

Phillips Curve in this context.

Final Goods Firms. Final goods are produced by a competitive sector of firms using

a CES technology

Yt =

[∫ 1

0

(
yj

t

) ε−1
ε dj

] ε
ε−1

,

8While different from any individual household’s SDF, the use of this SDF maximizes the value of
the profit share claims for any agent. This is the case because we distribute profits proportional to capital
holdings which are idiosyncratically risky. See Brunnermeier et al. (2022) for an in-depth discussion of
this weighted-average SDF.

9This is consistent with the redistribution strategy according to factor input shares as suggested by
Kaplan, Moll and Violante (2018). Note that we include price adjustment costs into the transfers for
simplicity. At the expense of additional notation, we could also make price adjustment cost a resource
cost without significantly altering any of our results.
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where yj
t is the input quantity of intermediate good variety j and ε is the elasticity of

substitution across varieties. By standard CES cost minimization, final goods producers

have downward-sloping demand curves

yj
t =

Pj
t

Pt

−ε

Yt (8)

and the nominal price of the final good is given by

Pt =

[∫ 1

0

(
Pj

t

)1−ε
dj

] 1
1−ε

.

Government. There is a government that issues floating-rate nominal government

bonds and imposes taxes on capital. As stated previously, the total nominal quantity of

outstanding bonds is denoted by Bt, its growth rate by µB
t , the nominal interest rate by

it, and the proportional capital (value) tax rate by τK
t . The government’s choices of the

three policy variables, nominal interest it, the bond issuance rate µB
t , and the capital tax

rate τK
t , must satisfy the flow budget constraint

itBt = µB
t Bt + Ptτ

K
t · qK

t Kt. (9)

That is, the total interest payments itBt have to funded by new bond issuance µB
t Bt or

taxes Ptτ
K
t · qK

t Kt.

The budget equation (9) makes apparent why we have assumed that bond growth

dBt/Bt is locally deterministic. In our framework, we have combined together all gov-

ernment liabilities in the single liability “bonds” Bt, so that no market transactions

between different types of government liabilities (e.g. open market operations of ex-

changing bonds for reserves) can (discontinuously) change the quantity of outstanding

bonds. Then, any dZt-loading of dBt/Bt would have to be absorbed by a dZt-loading

in tax revenues,10 i.e. a shock-contingent tax/transfer scheme that continuously alter-

nates between positive and negative transfer payments. Such contingent tax/transfer

10Interest payments cannot absorb a dZt-loading of dBt/Bt as long as the government issues standard
nominal debt which must make locally deterministic interest payments.
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schemes are highly counterfactual in our view, which motivates us to restrict attention

to locally deterministic bond growth.11

Henceforth, we denote by

s̆t :=
Ptτ

K
t qK

t Kt

Bt
(10)

the ratio of the primary surplus to outstanding government debt. With this notation,

the budget constraint (9) simplifies to

it = µB
t + s̆t. (11)

In what follows, we assume that the government sets the nominal rate it and the surplus-

debt ratio s̆t according to some policy rules

it = i (St) , s̆t = s̆ (St) (12)

and adjusts taxes τK
t and bond issuance µB

t to satisfy the budget constraint (11) and the

definition equation of s̆t.12 Here, St is a vector of aggregate variables (e.g., πt, σ̃t) chosen

by the government. In our language, we will loosely identify it with “monetary policy”

and s̆t with “fiscal policy.”

2.2 Equilibrium

Market Clearing. The goods market clears when the total output equals the sum of

consumption and investment ∫ 1

0
ci

tdi +
∫ 1

0
ιitk

i
tdi = Yt. (13)

The bond market clearing condition states that bonds held by households must equal

bonds supplied by the government∫ 1

0
θi

tn
i
tdi =

Bt

Pt
. (14)

11It should be emphasized that our assumption does not rule out state-contingent changes in the
capital tax rate. It merely rules out transfer schemes whose cash flows directly load on the Brownian
innovations dZt.

12In general, the assumption of automatically adjusting taxes may lead to equilibrium multiplicity.
However, the model always features at most one equilibrium in which the value of government debt
is positive and stationary. Compare Brunnermeier, Merkel and Sannikov (2020) for a discussion in a
flexible price version of our model. In the following, we always select this equilibrium. This choice is in
full analogy to the standard equilibrium selection in models of money as a medium of exchange.
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Equilibrium Definition. Natural state variables in our model are σ̃t, Bt, Kt, and Pt. It

is possible to reduce the dimensionality of the state space from four to two dimensions.

First, because of the AK nature of the economy, the capital stock Kt only matters for the

scale of the economy. We can eliminate it from the state space by considering descaled

quantities. Second, the states Bt and Pt only matter through their impact on the real

value of government bonds, Bt/Pt. Thus, we can equivalently use the normalized value

of the bond stock qB
t as our second state variable. Recall its definition

qB
t :=

Bt

PtKt
.

The dynamics of qB
t follow by Ito’s lemma from the dynamics of bond supply Bt, the

price level Pt, and aggregate capital Kt:

µ
q,B
t = µB

t − πt − gt, σ
q,B
t = 0. (15)

Importantly, the value of nominal bonds is directly linked to the price level. In the

presence of price stickiness, qB
t is also locally deterministic (σq,B

t = 0), i.e. it becomes

a slow-moving state instead of the instantaneously adjusting equilibrium price that it

would be under flexible nominal prices.

Definition 1 (Markovian equilibrium) An equilibrium consists of laws of motion for the

state variables {σ̃t, qB
t } and of equilibrium mappings{

qK(σ̃t, qB
t ), ϑ(σ̃t, qB

t ), u(σ̃t, qB
t ), ι(σ̃t, qB

t ), π(σ̃t, qB
t ), i(σ̃t, qB

t ), s̆(σ̃t, qB
t )
}

that satisfy

• household and firm optimality,

• the policy rule (12),13

• market clearing conditions (13) and (14),

• the consistency requirement (15).

13The government budget constraint (11) and the definition of s̆t can then be used to back out the tax
rate τK

t and the bond growth rate µB
t .
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2.3 Solution Method

We solve the household problem using a recursive approach as in Brunnermeier,

Merkel and Sannikov (2022) and intermediate goods firms’ price setting problems us-

ing the stochastic maximum principle. Details are outlined in Appendix B. We collect

and discuss key model equations below in Section 3 where we explain the model mech-

anisms. We proceed to solve for equilibrium mappings{
qK(σ̃t, qB

t ), ϑ(σ̃t, qB
t ), u(σ̃t, qB

t ), ι(σ̃t, qB
t ), π(σ̃t, qB

t ), i(σ̃t, qB
t ), s̆(σ̃t, qB

t )
}

numerically using an iterative method as in Brunnermeier and Sannikov (2016). De-

scriptions of the numerical algorithm can be found in Appendix C.

2.4 Quantitative Results

In this section, we present a calibration of our model and illustrate its main quanti-

tative predictions.

Calibration. First, we calibrate the time discount rate ρ to match the household port-

folio share of safe assets of 15% in the stochastic steady state, which is roughly consis-

tent the empirical evidence provided by Bayer et al. (2019).

We then assume the following functional forms for capital adjustment cost Φ(·)
and depreciation rate δ(·). Following standard arguments, the investment function is

concave while the depreciation rate function is convex,

Φ(ιt) =
1
φ

log(1 + φιt), δ(ut) =
δ̄

2
u2

t .

We set φ = 5 as in Di Tella and Hall (2022). The intercept of the depreciation rate

function δ̄ is chosen to target a depreciation rate of around 7% in the stochastic steady

state (e.g., Kaplan, Moll and Violante, 2018). For the New Keynesian block, we follow

Kaplan, Moll and Violante (2018) in setting ε = 10 and κ = 100 to match the slope of

the Phillips Curve to 0.1.

We adopt the Heston (1993) model of stochastic volatility for the law of motion of

uncertainty σ̃t. That is,

dσ̃2
t = b(σ̄2 − σ̃t)dt− νσ̃tdZt.
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The calibration of the uncertainty process follows from Merkel (2020). Specifically, we

choose the value of {b, σ̄2, ν} to match some of the important moments of {σ̃t} to those

of the series of establishment-level TFP shocks reported by Bloom et al. (2018).

For expositional purposes, we first consider an economy with constant policy vari-

ables i and µ̆B.14 We choose the fiscal policy to target a 1% primary surplus (% of GDP)

in the stochastic steady state. The level of nominal rate i is chosen such that the steady-

state inflation is zero. In Section 4, we present another parameterization where the

nominal interest rate responds negatively to uncertainty shocks.

Table 1 summarizes the baseline calibration that will be used in the quantitative

analysis.

Parameter Description Value Target
Preference

ρ Discount Rate 0.07 ϑSS = 15%, Bayer et al. (2019)
Production

a Productivity 0.18 Standard
δ̄ Depreciation Rate Function 0.085 δSS ≈ 7%
φ Investment Adjustment Function 5 Di Tella and Hall (2022)

New Keynesian Block
ε Elasticity of Substitution 10 Kaplan et al. (2018)
κ Menu Cost 100 Kaplan et al. (2018)

Uncertainty
b Speed of Adjustment 0.15 Bloom et al. (2018)

σ̄2 Mean 0.085 Bloom et al. (2018)
ν Volatility 0.037 Bloom et al. (2018)

Monetary-Fiscal Policy
i Interest Rate 2.3% πSS = 0
s̆ Fiscal Policy 0.8% 1% Primary Surplus

Table 1: Model Parameterization

Numerical Results. Consider an economy that is initially (at t = 0) in the stochastic

steady state where σ̃2
0 = σ̄2. We compute the impulse response functions (IRFs) to an

uncertainty shock by comparing the results of the following two simulations

14Note that in the unique stationary monetary equilibrium (see footnote 12), the price level and infla-
tion are determinate and the Taylor principle is not required for equilibrium selection.
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Simulation 1. At t = 0, the economy is hit by a positive uncertainty shock,15 and no

other shocks are realized hereafter.

Simulation 2. No shocks are realized forever so the economy stays in the stochastic

steady state.

The IRFs are defined as the difference between paths of relevant variables observed in

these two simulations. Figure 1 visualizes such dynamics of the economy following

a positive uncertainty shock. We briefly describe these dynamics here. An in-depth

discussion of the mechanism is deferred to Section 3.
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Figure 1: Impulse Response Functions (percentage differences)

15We calibrate the size of the shock to a generate a 3% recession in output.
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We define the aggregate portfolio weight in bonds as the ratio of bond wealth to the

total wealth of the economy,

ϑt =
Bt/Pt

Bt/Pt + qK
t Kt

=
qB

t
qB

t + qK
t

. (16)

As future uncertainty rises, the households increase their portfolio weight on bonds.

When prices are sticky, the value of nominal bonds cannot adjust to clear the market,

and the heightened demand for bonds leads to overshooting in the price of capital. As

plotted in panel 2 and 3, the capital price qK
t drops sharply when the shock hits, and

then slowly converges to the new steady state level. In the meantime, the bond price

qB
t is sticky and rises gradually over time.

The drop in the price of capital in turn depresses effective demand. Both investment

and aggregate output fall. The recession in aggregate demand reduces the marginal

cost facing intermediary goods producers and increase their markups. Since the current

price level is too high, the firms optimally set lower prices in the future, resulting in a

period of disinflation. Finally, households demand a higher risk premium as the return

on capital becomes more uncertain.

In summary, our model implies that uncertainty leads to recessions in consumption,

investment, and output, disinflation, and portfolio rebalancing towards safe bonds. It is

worth noting that our model predicts that the return on capital increases while the real

economy is in a downturn following positive uncertainty shocks. Hence, our model

can potentially account for the recent disconnect between the return on capital and the

real economy (e.g., Caballero and Simsek, 2021).16

3 Mechanism

3.1 Solving the Household Problem

As detailed in Appendix B, our setup leads to an analytical solution to the house-

hold problem.

16Our current calibration does not fully match the magnitude of increases in risk premia following
uncertainty shocks. To quantitatively capture this adjustment, the model needs a larger risk aversion.
Nevertheless, we maintain the assumption of log utility in this paper for the sake of tractability.
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Proposition 1 The first-order conditions for household i are

ci
t : ci

t = ρni
t (17)

ιit : Φ′(ιit) = 1/qK
t (18)

ui
t : δ′(ui

t) = pR
t /qK

t (19)

θi
t : Et

[
dRK

t − dRB
t

]
/dt = (1− θi

t)
[
(σ

q,K
t )2 + σ̃2

t

]
(20)

The first-order conditions have intuitive economic interpretations. With logarithmic

utility, the households always consume a constant fraction ρ of their net worth. The

investment rate is positively associated with the price of capital, which is a standard

Tobin’s q relationship. The utilization rate is increasing in the rental price of capital pR
t ,

which represents the marginal revenue from production, and decreasing in the price of

capital qK
t , which represents the opportunity cost of depreciating more capital. Capital

earns a risk premium on both aggregate risk and idiosyncratic risk, where the premium

depends on the households’ risk exposure (1− θi
t), the amount of aggregate risk σ

q,K
t ,

and the amount of idiosyncratic risk σ̃t.

The first-order conditions (18) – (20) also imply that the household’s decisions on

investment ιt, utilization ut, and portfolio weight θt are independent of their own net

worth or capital stock. Therefore, the households in this economy are homogeneous up

to scale, as they all choose the same investment and utilization rates and hold the same

portfolio regardless of their net worth.17 While agents are heterogeneous with regard

to their net worth ni
t, the net worth distribution does not affect macro aggregates. It is

in this sense that our analysis abstracts from distributional aspects that have been the

focus of much of the HANK literature.

Note that the total net worth of the households consists of the total (real) value of

government bonds and capital, ∫ 1

0
ni

tdi = (qB
t + qK

t )Kt.

It is then useful to write the goods market clearing condition (13) as

ρ(qB
t + qK

t )Kt + ιtKt = autKt. (21)

17Henceforth, we omit the i superscript since all decision variables are identical across households.
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Since all households choose the same portfolio θi
t = θt, the bond market clearing con-

dition (14) can be simplified to

θt =
Bt/Pt

Bt/Pt + qK
t Kt

=
qB

t
qB

t + qK
t

. (22)

Comparing equations (16) and (22), we see that the individual portfolio weight must

coincide with the aggregate portfolio weight, θt = ϑt.

3.2 Understanding Household Portfolio Decisions

To understand how household portfolio decisions respond to fluctuations in eco-

nomic uncertainty, we derive a more intuitive condition that characterizes the dynam-

ics of ϑt. Since the portfolio weight is uniform across households and thus not driven

by any idiosyncratic shocks, we postulate that

dϑt

ϑt
= µϑ

t dt + σϑ
t dZt.

Plugging the expressions for asset returns (4), (5) and market clearing conditions (21),

(22) into the household portfolio FOC (20), we obtain a closed form solution for µϑ
t .

Proposition 2 (Bond Valuation Equation) The law of motion of ϑt satisfies

µϑ
t = ρ− (1− ϑt)

2 σ̃2
t − s̆t. (23)

In integral form,

ϑt = Et

{∫ ∞

t
e−ρ(s−t)ϑs

[
(1− ϑs)

2σ̃2
s + s̆s

]
ds
}

. (24)

This result clarifies that households’ portfolio choice depends on only two pro-

cesses, the path of future uncertainty {σ̃s}s≥t and the path of future surplus-debt ra-

tios {s̆s}s≥t. Households demand more government bonds when they are valuable as

insurance (higher σ̃) or when they are subsidized by government policy (higher s̆t).18

Importantly, household portfolio choice does not directly depend on output or capi-

tal utilization (ut), inflation (πt), the nominal interest rate (it), and any parameters gov-

erning the price setting behavior of firms (ε, κ). These variables and parameters only

18A higher surplus-debt ratio effectively subsidizes bond relative to capital holdings because it implies
that the government taxes capital at a larger rate to make payouts to bond holders.
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affect household portfolio choice between capital and bonds if (fiscal) policy adjusts s̆

in response to them. This leads to the following separation result.

Proposition 3 (Separation of Portfolio Choice) Suppose that the fiscal policy rule chooses

s̆ as a function of (σ̃t, ϑt) only.19 Then

ϑt = ϑ(σ̃t)

is a function of the exogenous uncertainty state σ̃t only and this function does not depend on

the model parameters ε and κ.

In particular, portfolio choice is unaffected by inflation πt, capital utilization ut, nominal

interest rates it and the degree of price stickiness.

This proposition has two important corollaries. First, monetary policy is portfolio-

neutral: the nominal interest rate path it set by the monetary authority does not distort

the portfolio choice between bonds and capital unless it induces changes in the fiscal

policy instrument s̆t. Second, regardless of how sluggish nominal prices adjust, portfo-

lio choice between capital and bonds is always “fast” in the sense that portfolios adjust

precisely as under flexible prices. This second corollary plays an important role for the

overshooting result discussed below.

Interest Rate Policy and Fiscal Policy. It is sometimes believed that interest rate pol-

icy can distort the households’ demand for safe assets by changing the risk-free rate.

We show that this is not necessarily the case when bonds are in a positive net supply. In

our baseline model, the government only affects household portfolios through (capital)

taxes in this economy. The reason is that the bond return (4) depends on the difference

it− µB
t of nominal interest payments and bond issuance, which equals the surplus-debt

ratio s̆t by the government budget constraint (11) and is thus directly proportional to

taxes.20 Intuitively, changes in seigniorage income through bond issuance (µB
t ) dilute

the claim of existing bondholders in a way that exactly offsets changes in interest rates

19This includes, for example, simple policies such as a constant capital tax rate τK
t .

20The return on capital (5) also depends on government policy, but naturally only on the capital tax
rate τK

t .
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(it), unless they are associated with changes in the distribution of primary surpluses to

bond holders (i.e. changes in s̆t).

To control household portfolio decisions, the government thus needs to adjust dis-

tortionary taxes. More specifically, the government can encourage investments in bonds

by taxing capital and subsidizing bond holders through interest payments.

It should be emphasized that this strong result (i.e., interest rate policy alone is

completely ineffective) is a special feature of our baseline model that is, for example,

relaxed by the introduction of long-term bonds (Section 6). However, we would like to

stress that fiscal policy is crucial in an environment with nominally safe assets, which

is in sharp contrast to models without safe assets where fiscal policy only plays a minor

role (see, for example, Section 4 and Basu and Bundick, 2017). We also highlight the

possibility that seigniorage income of the government dampens the transmission of

monetary policy, and that the response of fiscal policy becomes crucial when markets

are incomplete.

3.3 The Transmission of Uncertainty Shocks

To understand how uncertainty affects output, we can rewrite the market clearing

condition (21) as

ut =
1
a

[
ρ(qK

t + qB
t )︸ ︷︷ ︸

consumption
demand

+ ιt︸︷︷︸
investment

demand

]
. (25)

The demand for final goods can be decomposed as demand for consumption and in-

vestment. The consumption demand is tied to the households’ net worth through

wealth effects. Net worth depends on the value of both bonds and capital. The in-

vestment demand ιt instead depends on qK
t through the Tobin’s q relationship (18). To

determine the short run output ut, it is thus important to understand the behavior of

the levels of asset valuations, qK
t and qB

t .

The solution of the household portfolio problem (equation (24)) determines rela-

tive asset valuations. Households invest more in nominal bonds as future uncertainty

increases. Formally, the nominal wealth share ϑt rises. Because portfolio choice is sep-

arated from output determination by Proposition 3, we can treat ϑt in the following as
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an exogenous process and discuss how the components of aggregate demand depend

on it.

Recall that

ϑt =
qB

t
qB

t + qK
t
=

1
1 + qK

t /qB
t

.

An increase in ϑt mechanically implies a drop in the price of capital relative to the value

of bonds. However, the absolute movements in qK
t and qB

t hinge on the presence of price

stickiness.

Equilibrium under Flexible Prices. When prices are flexible, intermediate goods firms’

problem collapses to a static profit-maximization problem at each time and firms en-

gage in constant markup pricing (see Appendix D for details). Price setting merely

determines the capital rental price,

pR, f lex
t = a

ε− 1
ε

, (26)

while the nominal price level Pt is free to adjust in order to clear the goods market,

i.e. make equation (25) hold. In that equation, Pt enters through the scaled bond value

qB
t = Bt/(PtKt), which it is inversely proportional to.

Together with equations (19), (22), and (26), we can solve the goods market clearing

equation (25) for prices qK
t and qB

t analytically. For tractability, we keep using the fol-

lowing functional forms: Φ(ι) = log(1 + φι)/φ and δ(u) = (δ̄/2)u2, which then imply

that under flexible prices,

qK, f lex
t =

[
a2

ρδ̄

ε− 1
ε

]1/2

(1− ϑt)
1/2, (27)

qB, f lex
t =

[
a2

ρδ̄

ε− 1
ε

]1/2
ϑt

(1− ϑt)1/2 . (28)

As uncertainty increases (ϑt ↑), government bonds gain in value (qB
t ↑) while capital

loses (qK
t ↓). Since qB

t ∝ 1/Pt, the increase in qB
t implies a drop in the price level Pt.

Economically, an increase in ϑt induced by heightened uncertainty means that agents

desire more bond savings and less capital savings. As a result, both the capital price
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qK
t and the physical investment rate ιt fall, implying lower consumption demand due

to capital wealth and investment demand on the right-hand side of equation (25). For

fixed utilization ut and bond values qB
t , aggregate demand thus falls short of supply.

However, unlike capital, bond holdings cannot be used as an aggregate savings de-

vice. As households collectively demand more nominal bonds and less goods, the price

level falls and the real value of bonds qB
t appreciates. A wealth effect from increased

bond wealth generates additional consumption demand that eliminates the shortfall in

aggregate demand without any reduction in supply.21

Equilibrium under Sticky Prices: Impact Effect. When the price level Pt is sticky, it

can no longer drop immediately in response to an uncertainty shock. There is no (im-

mediate) deflationary revaluation of nominal wealth that raises consumption demand

as under flexible prices. Instead, supply must adjusts to the shortfall in demand to

clear the goods market. In this model, this adjustment happens through a reduction in

capital utilization ut.

In fact, in our continuous-time model, the state variable qB
t for (scaled) bond wealth

is perfectly rigid over short time periods and thus cannot adjust at all on shock im-

pact.22 As a consequence, when higher uncertainty raises ϑt, both total wealth qK
t +

qB
t = qB

t /ϑt and capital valuations qK
t = (1− ϑt)/ϑt · qB

t fall. The former implies a re-

duction in consumption demand, the latter a reduction in investment demand through

the Tobin’s q relationship (18). Importantly, both components of aggregate demand

in equation (25) are fully predetermined by the (separate) portfolio choice ϑt and the

(rigid) state variable qB
t . The only free variable to adjust on impact is ut and a recession

is inevitable.

In fact, the investment demand and the capital price always fall by more than under

flexible prices. The reason is that when qB
t is unable to adjust, a higher portfolio weight

ϑt can only be achieved through a more substantial drop in the capital price qK
t . That is,

since the value of government bonds cannot adjust quickly to match fluctuations in the

demand for bonds, uncertainty shocks depress the demand for capital even further.

21In fact, in this model aggregate supply even expands under flexible prices because the lower capital
price qK

t reduces the opportunity cost of higher capital utilization ut.
22Formally, this is apparent in σ

q,B
t = 0 in equation (15).
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Suppose the economy is in the steady state before an uncertainty shock hits. Im-

mediately after uncertainty increases, the price of bonds is stuck at the pre-shock level

qB
t−, which is smaller than the post-shock flexible price value qB, f lex

t . At the onset of the

shock, the price of capital is determined by the new portfolio weight ϑt, so

qK
t = qB

t−
1− ϑt

ϑt
< qB, f lex

t
1− ϑt

ϑt
= qK, f lex

t . (29)

Thus, the price of capital overshoots relative to the flexible price response following un-

certainty shocks when nominal prices are sticky.

This result is reminiscent of the classic overshooting model by Dornbusch (1976),

who shows that stickiness in domestic prices results in overshooting in exchange rates,

whereas in our model, the effective stickiness in bond valuations leads to overshooting

in the price of capital.

Equilibrium under Sticky Prices: Adjustment Dynamics. After the shock, the price

level Pt slowly decreases over time to bring it closer to its natural (flexible price) level,

leading to a period of disinflation. Adjustment dynamics are guided by the Phillips

curve resulting from intermediate goods firms’ forward-looking price setting behavior

and by the state equation (15). Under the simplifying assumption that agents do not

expect any additional future shocks going forward, these two equations can be written

as23

dπt =

[
ρπt −

ε

κ

(
pR

t − pR, f lex
)]

dt (30)

dqB
t =

(
it − πt − s̆t − gt

)
dt (31)

where pR
t and gt are functions of utilization ut, and the latter itself is fully determined

by the demand equation (25) and the current bond value qB
t .

The Phillips curve (30) is a forward-looking equation that encodes the standard

price setting logic in New Keynesian models: firms’ price setting is trading off a de-

sire to minimize deviations of marginal unit costs pR
t from their flexible price value

pR, f lex to achieve the statically optimal markup (second term in equation (30)) and a

23The fully stochastic Phillips curve that guides the actual model dynamics can be found in Appendix
A. The equations stated here facilitate interpretation as they are significantly simpler.
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desire to smooth inflation in order to minimize price adjustment costs (first term in

equation (30)). After an increase in uncertainty, a lack of demand for capital inputs

drives the capital rental price pR
t below its flexible price value, so that

− ε

κ

(
pR

t − pR, f lex
)
> 0

and equation (30) implies gradually increasing inflation. As this is a (forward-looking)

backward equation, the gradual increase in inflation is achieved by an immediate re-

duction of πt into deflationary territory.

Low and potentially negative πt increases the rate of appreciation of the state vari-

able qB
t in equation (31), so that qB

t gradually approaches its natural level qB, f lex
t over

time. As qB
t becomes closer to qB, f lex

t , the marginal cost gap pR
t − pR, f lex in the Phillips

curve (30) starts to shrink, thereby dampening further adjustments in inflation.24

It is in the state equation (31) that nominal interest rates it enter. By raising the

nominal rate, the government expands nominal bonds at a faster rate µB
t (for given

s̆t), so that the price level has to adjust by less in order to expand the real quantity of

safe assets qB
t . Importantly, interest rate policy only acts on a state evolution (forward

equation) not on some forward-looking choice condition (backward equation). As a

consequence, interest rate policy can affect the speed of adjustment dynamics but not

prevent the initial reduction in aggregate demand on shock impact.

3.4 Relations to the Existing Literature

Monetary Models with Idiosyncratic Risk. Recent works by Di Tella (2020) and Brun-

nermeier, Merkel and Sannikov (2020, 2022) have emphasized the role of nominal assets

(e.g., money and government bonds) as an insurance against idiosyncratic risk. Our pa-

per shares the same spirit that uncertainty shocks affect the precautionary savings of

households, which leads to portfolio rebalancing between safe assets and risky assets

(“flight-to-safety”). Further, our paper extends this literature by introducing nominal

rigidity and highlighting the interaction between sticky prices and portfolio decisions.

24Whether qB
t asymptotically reaches qB, f lex

t depends on the long-run behavior of nominal rates as the
Phillips curve is only consistent with a zero long-run output gap if inflation settles down at zero.
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Safe Asset Shortage at the Zero Lower Bound (ZLB). Recently, a number of works

(e.g., Caballero and Farhi, 2018; Acharya and Dogra, 2022) have examined the implica-

tions of safe asset scarcity. However, in this class of models, government policy affects

the safety demand only through the nominal interest rate, and safe asset supply only

matters for equilibrium outcomes when the nominal rate is constrained by the ZLB. In

contrast, we show that when safe assets take the form of nominal government bonds

whose value is slow to adjust due to nominal rigidity, it is important to consider the

entire government budget constraint. In particular, safe asset supply can have a di-

rect impact on macroeconomic dynamics even if the nominal rate is positive, and it is

crucial to consider the response of fiscal policy to portfolio reallocations.

Government Bonds as a Liquid Asset. A recent strand of the New Keynesian litera-

ture focuses on the liquidity service of government debts. A notable example is Bayer

et al. (2019), where households are subject to idiosyncratic income risk as in Aiyagari

(1994). In their model, the capital stock is subject to transaction costs whereas bonds

can be easily liquidated.25 When uncertainty increases, the households hold more gov-

ernment bonds to facilitate future consumption smoothing. In this paper, we adopt an

alternative framework and motivate the agents’ portfolio choice problem with idiosyn-

cratic investment risk (e.g., Angeletos, 2007; Bloom, 2009). The households instead face

a risk-return trade-off between capital and bonds. When uncertainty rises, the house-

holds shed away from risk due to precautionary savings motives.

Despite having different foundations for household portfolio decisions, the over-

shooting mechanism emphasized here also applies to models where assets differ in

their degrees of liquidity. In fact, the interaction between nominal rigidity and the

valuation of nominal government bonds is ubiquitous in models with multiple assets.

However, while the existing literature has quantitatively established that uncertainty

shocks can trigger aggregate demand recessions, the role of nominal government bonds

has not received adequate attention. In this regard, our paper further clarifies the trans-

mission mechanisms behind previous quantitative results.

25Del Negro et al. (2017) provides a different modeling approach where government bonds ease the
financial frictions facing entrepreneurs.
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4 Comparison to Models without a Safe Asset

Previous literature has studied the impact of uncertainty shocks in New Keynesian

models where government bonds are in zero net supply (e.g., Basu and Bundick, 2017).

While abstracting away from portfolio reallocations following uncertainty shocks, the

authors still find similar business cycle co-movements following an uncertainty shock.

In this section, we contrast models without safe bonds to our baseline model and fur-

ther highlight the importance of portfolio adjustment in shaping macroeconomic dy-

namics following uncertainty shocks.

The model without a safe asset corresponds to a special case of our model where

the supply of bonds is zero (Bt = 0). In this case, the households are forced to choose a

portfolio entirely in capital (ϑt = 0).

The Source of Fluctuations. When Bt = 0, the short-term output is given by

ut =
1
a

[
ρqK

t︸︷︷︸
consumption

demand

+ ιt︸︷︷︸
investment

demand

]
. (32)

Since household portfolios stay constant over time, the interaction between portfo-

lio rebalancing and price stickiness is shut off. Instead, the recessions in consumption,

investment, and output stem from inadequate responses of monetary policy. To further

clarify the transmission mechanism of uncertainty shocks in this model, it is useful to

revisit the household portfolio choice condition (20), which now becomes

Et

[
dRK

t

]
/dt− r f

t = (σ
q,K
t )2 + σ̃2

t . (33)

When uncertainty increases, the households demand a higher risk premium on cap-

ital. In this case, the risk free rate is given by the Fisher equation

r f
t = it − πt

and therefore directly controlled by the monetary authority through the policy rate.If

monetary policy failed to lower the risk-free rate aggressively enough, the heightened

risk premium requires a higher return on capital, which leads to a drop in capital price

qK
t . From equation (32), we see that a drop in qK

t translates to recessions in consumption,

investment, and output when prices are sticky.
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Interest Rate Policy. Furthermore, Basu and Bundick (2017) show that first best allo-

cations can be implemented in their environment if the nominal interest rate pegs the

natural rate perfectly, in which case investment and output increase after uncertainty

rises. Here, we prove a similar result but within our model. Plugging the return on

capital (5) into equation (33), we see that

uta− ιt

qK
t

+ gt +
[
µ

q,K
t − (σ

q,K
t )2

]
= r f

t + τK
t + σ̃2

t . (34)

In equilibrium, all variables on the left-hand side depend on qK
t . So by changing the real

rate r f
t , monetary policy directly influences the required return on capital and therefore

the price of capital qK
t . Formally, interest rate policy alone is adequate in stabilizing the

economy when government bonds are in zero net supply, if the nominal rate is perfectly

aligned with the natural rate.

Proposition 4 If bonds are in zero net supply, the flexible price equilibrium with zero inflation

can be implemented with the following policy

it = in
t , τK

t = 0.

The natural interest rate in
t is defined as

in
t = ρ + gn

t − σ̃2
t ,

where gn
t is the steady state growth rate of the aggregate capital stock (see Appendix D).

In contrast, when government bonds are in positive net supply, equation (29) shows

that interest rates only affect the initial recession in qK
t if they affect household port-

folios. However, from the bond evaluation equation (23), we see that the household

portfolio and the risk premium on capital depends only on the level of uncertainty σ̃t

and s̆t, the surplus-debt ratio, which is only affected by the tax rate τK
t (and the rela-

tive price ϑt). When the tax rate is unresponsive to shocks, the effects of interest rate

changes are offset by movements in bond growth. As have been summarized in Propo-

sition 3, interest rate policy can only affect the portfolio of the households if it induces

responses in fiscal policy (distortionary taxes).
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Amplification. More importantly, even under the same monetary policy, the effects

of uncertainty shocks are significantly amplified in the presence of nominal bonds. To

test this prediction quantitatively, we numerically solve the model with Bt = 0, and

compare the implied impulse response functions with the baseline model with Bt > 0.

We specify a Taylor rule for the model without safe bonds

it = i∗ + ϕ(πt − π∗).

To ensure that monetary policy responses do not drive the results of comparison, we

feed the same paths of {it} into the baseline model when computing the impulse re-

sponse functions.26 Further, the government’s interest payments become zero when

Bt = 0. To maintain comparability, we also impose s̆t = 0 on the baseline model in this

exercise.
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Figure 2: Impulse Response Function Comparison

Figure 2 compares the impulse response functions of the two models following the

same uncertainty shocks and nominal rate responses. As shown in the figure, the model

with nominal bonds generate deeper recessions in capital price and output, as well as

26Technically, we construct a mapping of uncertainty to the nominal rate it = i(σ̃t) and replace equa-
tion (12) with this mapping.
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greater deflationary pressure. We then conclude that the interaction between nomi-

nal rigidity and household portfolio adjustment constitutes a powerful amplification

mechanism.

5 Fiscal Policy

In previous sections, we have demonstrated how nominal rigidity leads to amplified

recessions in the presence of nominal government bonds and how interest rate policy

alone is inadequate for price stabilization. In this section, we examine how appropri-

ately designed monetary and fiscal policy can stabilize an economy with uncertainty

shocks and even implement constrained efficient allocations.

5.1 Non-distortionary Fiscal Policy

First, we show how fiscal policy can be utilized to stabilize uncertainty-induced

fluctuations. Distortionary fiscal policy (e.g., taxes on capital) has very powerful effects

in our economy as it changes both the short-term dynamics and the steady state. This

section instead focuses on non-distortionary fiscal policies. Discussions on the design

of distortionary taxes will be deferred to Section 5.2.

Lump-sum Taxes. Assume that in addition to the capital tax, each household also

has to pay τtKtdt units of final goods as taxes over the time interval [t, t + dt]. Since the

mass of households is one, the aggregate flow of real lump-sum taxes is also τtKtdt. The

government can also make transfers to the households by selecting a τt < 0. Further,

we assume that the market for aggregate risk is complete.

Assumption 1 The households can write contracts on aggregate variables.

In this case, the households trade claims on future lump-sum taxes with each other.

Importantly, the amount of capital tax paid by an individual household depends on its

capital stock, which is subject to an idiosyncratic risk. Therefore, unlike the lump-sun

tax, the capital tax is not tradable.
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The government is long in the tax claims while the households are collectively short.

Let qτ
t Kt be the value of all tax claims at time t and dqτ

t = µ
q,τ
t qτ

t dt.27 The return on the

tax claims is

dRτ
t =

τt

qτ
t

dt +
d(qτ

t Kt)

qτ
t Kt

=

(
τt

qτ
t
+ gt + µ

q,τ
t

)
dt.

In equilibrium, the price of tax claims qτ
t is pinned down by a no-arbitrage condition

between bonds and tax claims, and is ultimately a function of future tax rates,

qτ
t = qτ({τs}∞

s=t).

Essentially, the government expands the set of safe assets by introducing a tradable

lump-sum tax. The total supply of idiosyncratic-risk-free assets to the household sector

is now qG
t Kt = (qB

t − qτ
t )Kt. The dynamics of the economy is the same as before but with

a new safe asset (i.e., with bonds qB
t Kt replaced by total government liabilities qG

t Kt).28

Instead of choosing a portfolio between capital and bonds, the households now allocate

their portfolio between capital and all government liabilities. Importantly, the price of

all safe assets qG
t is no longer sticky, and the government can potentially stabilize the

economy by choosing future tax rates {τs}∞
s=t such that qG

t is at its flexible-price level.

Proposition 5 Suppose that the rate of distortionary tax is a function of (σ̃t, ϑt) only. For any

such tax schemes, the associated zero-inflation flexible price equilibrium can be implemented if

the nominal rate it and lump-sum taxes {τs}∞
s=t satisfy

it = gn
t , qB, f lex

t = qB
t − qτ({τs}∞

s=t).

The price of tax claims qτ({τs}∞
s=t) is increasing in future tax rates. Its functional form, to-

gether with the price of safe assets under flexible prices qB, f lex
t and the formula for the steady-

state capital growth rate gn
t , is derived in Appendices D and F.

As discussed in Section 3, the steady-state price of safe assets increases after a pos-

itive uncertainty shock. Without lump-sum taxes, the appreciation of safe bonds is

achieved over time through disinflation. With lump-sum taxes and a complete market

for aggregate risk, the government can rapidly boost the total supply of safe assets by

committing to lower taxes (or higher transfers) in the future.
27We consider a case where the future path of lump-sum taxes {τt} is deterministic, so the value of

tax claims does not bear any aggregate risk.
28See Appendix F for a formal discussion.
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5.2 Optimal Capital Tax

Welfare and Constrained Efficiency. To study optimal monetary-fiscal policy in this

economy, we first derive the value function of the households. The consumption of an

individual household can be written as

ct = (aut − ιt)Kt︸ ︷︷ ︸
aggregate consumption

× nt

Nt︸︷︷︸
wealth share

, (35)

where Nt = (qB
t + qK

t )Kt is the total net worth of the economy. Since the households

are homogeneous, the wealth share of any individual household is only subject to the

idiosyncratic risk in its capital accumulation process. Specifically,

d(nt/Nt)

nt/Nt
=

d(kt/Kt)

kt/Kt
= (1− ϑt)σ̃tdZ̃t.

Then the household value function can be obtained by taking log on both sides of equa-

tion (35) and integrate over time.

Proposition 6 The households’ value function can be written as

V0 = E0

[∫ ∞

0
e−ρt log ctdt

]

= E0

[∫ ∞

0
e−ρt log(aut − ιt)dt

]
︸ ︷︷ ︸

“marginal productivity”

+ E0

1
ρ

∫ ∞

0
e−ρt

[
g(ut, ιt)−

(1− ϑt)2σ̃2
t

2

]
dt


︸ ︷︷ ︸

growth-risk trade-off

+ constant.

The household’s welfare depends first on a “marginal productivity” term which

determines the fraction of aggregate capital stock that is transformed to consumption

goods. The household also faces a growth-risk trade-off. While holding a portfolio

more concentrated in safe assets reduces the household’s exposure to idiosyncratic risk,

it also lowers the equilibrium price of capital and investment (see equation (27)).

The constrained-optimal allocation is defined as the solution to the following prob-

lem where a planner maximizes the household value function subject to the market

clearing constraints and the Tobin’s q equation

max
ut,ιt,ϑt

V0 s.t. aut − ιt = ρ(qB
t + qK

t ), ϑt =
qB

t
qK

t + qB
t

, (36)

Φ′(ιt) = 1/qK
t .
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It is assumed that the government cannot directly distort the households’ investment

decision, so the Tobin’s q equation appears as a constraint. It is apparent that the plan-

ner’s problem collapses into a static problem at each time.

As is common in models with incomplete markets, the competitive equilibrium in

our model features pecuniary externality. Specifically, the households fail to fully inter-

nalize the impacts of their decisions on aggregate prices such as qK
t . Denote the solution

to the planner’s problem by ιot , uo
t , ϑo

t . With the parameter values in Table 1, the com-

petitive equilibrium yields in steady state

ιt > ιot , ut > uo
t , ϑt < ϑo

t .

That is, the competitive equilibrium exhibits insufficient risk sharing and excessive in-

vestment and production and is therefore is constrained-inefficient.

Replicating the Optimal Portfolio Weight. In this section, we show that appropri-

ately designed fiscal policy can replicate the constrained-efficient portfolio weight ϑo
t .

The procedure takes three steps. First, solve for ϑo
t from the first-order conditions of the

planner’s problem. Then, obtain its drift (µϑ
t )

o by applying Ito’s Lemma. Third, plug

(µϑ
t )

o into the bond evaluation equation (23) to get the appropriate surplus-debt ratio

s̆t and tax rate on capital.

Figure 3 plots ϑo
t and the optimal τK

t as a function of uncertainty σ̃t. The constrained-

efficient portfolio puts more weight on bonds when uncertainty is high, due to stronger

precautionary motives of the households. Meanwhile, the optimal tax rate is also in-

creasing with uncertainty. When uncertainty is low, the planner subsidizes capital to

encourage risk-taking, while when uncertainty is high, the planner taxes capital to

achieve better insurance against idiosyncratic risk.

Apart from the pecuniary externality in optimal choice, the economy also sustains

welfare loss from monopolistic competition among the intermediary goods firms. To

tackle the market power of intermediary goods producers, the government needs ad-

ditional tools, where the New Keynesian literature typically assumes a subsidy on the

intermediary goods producers (Woodford, 2003; Galí, 2008). The same type of output

subsidy also works in our model. We relegate the details to Appendix E.
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Figure 3: Optimal capital tax under parameterization in Table 1

To restore constrained efficiency, the government can take the following two steps.

First, it can eliminate the distortions associated with nominal rigidity using a lump-

sun tax as described in Proposition 5. Second, it can choose distortionary taxes (and

subsidies on intermediary goods firms) optimally so the flexible-price equilibrium is

constrained efficient.

6 Long-term Bonds

So far, we have assumed that the government issues nominal bonds with infinites-

imally short duration. As infinitesimally short-term nominal bonds are essentially the

same thing as money, this setting requires the nominal price of bonds to be always 1.

As a consequence, when the price price level is sticky, then so must be the real value of

government bonds – and thus safe assets – in the economy.

In this section, we generalize our model to allow for long-duration government

bonds. Then the tight link between the price level and the market value of safe assets

breaks down, yet our conclusions are not radically altered:

First, we show that even when the government issues long-term debt, the deter-

minants of portfolio choice and the nominal wealth share ϑt remain essentially un-

changed. As a consequence, nominal interest rate policy is still unable to affect portfolio
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choice directly (as opposed to indirectly through its fiscal consequences). Conditional

on the safe asset value qB
t , aggregate demand remains determined independently of

nominal variables.

Second, with long-term bonds there is a relative price between bonds (safe assets)

and money that can adjust instantaneously even under sticky prices. The adjustment

is tightly linked to the path of future policy rates by a condition that largely resembles

the expectations hypothesis. This enlarges the power of monetary policy to stabilize

aggregate demand on shock impact, as it can now move the safe asset value qB
t instan-

taneously by adjusting the path of future policy rates. However, with the single interest

rate policy instrument, monetary policy is generally unable to simultaneously close the

gap between safe asset demand and supply on impact of an uncertainty shock and keep

the nominal rate close to the natural rate as to not introduce future distortions in price

setting.

The setup of our generalized model is as before, except that we replace the as-

sumptions on government bonds: instead of floating-rate bonds, the government issues

bonds with a geometric maturity structure with duration 1/λ where λ > 0 is a model

parameter. Specifically, each bond has a face value bt that decays over time at rate λ,

and the bond makes continuous payments 1/Pt · λbtdt of final goods to its holder.29

We continue to assume that monetary policy controls the nominal short rate it.30 In the

limit λ→ ∞, this setup collapses to our baseline model.

We relegate a more detailed description of the generalized model as well as all

model derivation steps to Appendix G. Here, we only present the main conclusions.

As before, let Bt be the face value of the total stock of outstanding government bonds

and µB
t its growth rate. Let furthermore PB

t denote the nominal bond price, so that

qB
t Kt = PB

t Bt/Pt is the real value of the bond stock. The government’s flow budget

29Assuming a settlement in goods indexed to Pt instead of money avoids the need to also introduce
money into the model, but is otherwise without loss of generality.

30The nominal short rate equals the nominal interest rate on a hypothetical zero-net-supply bond with
infinitesimal duration.
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constraint in this setting can be written as

λ

(
1

PB
t
− 1

)
︸ ︷︷ ︸

=:īt

−µB
t = s̆t,

where as before, s̆t =
τK

t qK
t

qB
t

is the surplus-to-debt ratio. The only difference to our

baseline model is that nominal net payouts to bondholders are not equal to it, but to a

variable īt that turns out to be a type of smoothed version of future interest rates it.

As in our baseline model, only the difference īt− µB
t enters the return on bonds and,

hence, it is again only the fiscal policy variable s̆t that affects portfolio choice between

bonds and capital. In fact, Propositions 2 and 3 about the determination of the bond

wealth share ϑt and the separation of portfolio choice from nominal variables, including

the policy rate it, remain valid here.31

The important change is that, while the nominal price level Pt is sticky, the nominal

bond price PB
t is not. As a consequence, the (scaled) safe asset value qB

t = PB
t

Bt
PtKt

is

no longer a purely backward-looking state variable. Instead, only its second factor,

q̄B
t := Bt

PtKt
, is a state. Its evolution can be written as

dq̄B
t

q̄B
t

=
(
īt − s̆t − πt − gt

)
dt (37)

in full analogy to equation (31), except that the policy instrument it is here replaced

with īt.

Finally, the nominal bond price PB
t can be written in terms of īt. The actual safe asset

value qB
t is then related to the state variable q̄B

t by the identity

qB
t =

λ

λ + īt
q̄B

t . (38)

The link between the state variable q̄B
t and the safe asset value qB

t is thus solely deter-

mined by īt. The shorter is the debt duration (larger λ), the larger movements in īt are

required to move qB
t away from q̄B

t in order to stabilize aggregate demand.32

31As a corollary, the natural (flexible price) allocation is also unaffected by the bond duration param-
eter λ.

32While not the focus of this paper, the equation also shows that the impact of a lower bound on
nominal interest rates for aggregate demand stabilization is more severe, the shorter is the duration of
government debt: for larger λ, monetary policy needs to engineer a smaller (more negative) weighted-
average interest rate īt to offset a shortfall in aggregate demand.
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In sum, all model equations are the same as in our baseline model, except that it

is everywhere replaced with īt and qB
t now is the product of a backward-looking state

term q̄B
t and a “jump” term that only depends on īt. We show in the appendix that īt in

turn is related solely to the path of future policy rates {is}s≥t. Without aggregate risk

in policy rates, this relationship can be represented as

īt =
∫ ∞

t

(
λ + īs

)
e−
∫ s

t (λ+īs′)ds′ isds,

i.e. īt is essentially a weighted average of future nominal short rates. The same intuition

remains valid when interest rates are stochastic, although the formal relationship is

then more complex. We can thus work directly with īt instead of it as a monetary policy

instrument.33

As discussed in Sections 3 and 5, the inability of monetary policy to stabilize aggre-

gate demand on impact of an uncertainty shock in our baseline model is due to the fact

that there qB
t = q̄B

t is a state that does not react to monetary policy. Here, monetary

policy īt can affect qB
t directly through equation (38). Nevertheless, this is insufficient to

implement the flexible price allocation (or any other desired path of qB). The reason is

that with the single instrument īt, policy cannot simultaneously implement the flexible-

price safe asset value qB
t through equation (38) to close the output gap in the short run

and set the nominal rate to the natural rate to make the state evolution (37) consistent

with zero inflation in the long run. This is because the implementation of each policy

objective constrains the full path of future policy rates, but the requirements to achieve

both objectives simultaneously are usually incompatible, except by coincidence.

To illustrate this point clearly, we consider a very simple example: suppose we start

the economy in a steady state with constant σ̃ and consider an unanticipated shock

that permanently raises σ̃ at t = 0. For unchanged fiscal policy s̆,34 the permanent

shock leads to a (one-time) permanent increase in ϑ and the flexible-price level of qB.

For simplicity, restrict attention to a simple monetary policy that changes the nominal

rate i only once to a new level and keeps it there forever (then automatically ī = i).35

33There are some technical restrictions on which paths for ī are attainable. However, one can show
that any bounded path that satisfies inft≥0 īt > λ is always feasible.

34An identical conclusion would hold for a one-time change in s̆ to a new constant value to implement
the optimal new steady state policy

35The limited room for monetary policy in this example is not due to this additional assumption.
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Monetary policy could to do one of the following:

(1) Set i = in equal to the new (constant) natural rate. This policy ensures that qB
t

converges to the flexible price steady state value and there is no distortion from

sticky prices in the long run. Given this policy, equation (38) then implies that the

safe asset value on shock impact jumps to

qB
0 =

λ

λ + in q̄B
0 .

This happens to be equal to the new flexible price steady state level of qB for only

a single specific value of the parameter λ.

(2) Set i to produce a jump in qB at t = 0 that moves qB
0 immediately to the new

flexible price steady state qB, f lex. This implies that at the time the shock hits, there

is no output gap. By equation equation (38), the required interest rate is

i = λ
(

q̄B
0 /qB, f lex − 1

)
.

This required rate happens to be equal to the natural rate in for only a single

specific value of λ. Otherwise, this policy introduces a drift into the state variable

q̄B
t , so that both q̄B and qB moves over time. Thus qB starts to deviate from its

flexible price level in future periods and an output gap opens up then.

Except for one specific bond duration parameter λ, the policy instruments i required

for (1) and (2) thus differ. Unless λ happens to be just right, policy cannot simultane-

ously generate zero output gaps and zero inflation.36

7 Conclusions

In this paper, we present a New-Keynesian model with idiosyncratic risk and nom-

inal government bonds. We highlight a new transmission mechanism of uncertainty

shocks through household portfolios. As uncertainty builds up, the households rebal-

ance their portfolios towards government bonds, which leads to overshooting in the

Allowing {it} to follow an arbitrary path would not affect the conclusion.
36Moreover, that “coincidence level” of debt maturity depends on the size of the shock. Generally, it

is thus not possible to set λ ex ante such that (1) and (2) coincide ex post.
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price of capital price when prices are sticky. The drop in the price of capital further de-

presses aggregate demand and results in declines in economic activities. Monetary pol-

icy alone has limited impact on household portfolio without coordinated fiscal policy.

Finally, we show that the government can stabilize the economy with non-distortionary

taxes and restore constrained efficiency with distortionary taxes.
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A The New-Keynesian Phillips Curve

Proposition 7 (The New-Keynesian Phillips Curve) In a symmetric equilibrium where

all firms set the same price and produce the same amount of output (yj
t = Yt, Pj

t = Pt, π
j
t = πt),

the inflation rate satisfies

dΠt =

[
Πt

(
rt − gt + σΠ

t ςt

)
− ε

κ
(pR

t − pR, f lex)ut

]
dt + Πtσ

Π
t dZt. (39)

where rt := it − πt, Πt := πt
Yt
Kt

, ςt = (1− ϑ)σ
q,K
t and pR, f lex = a ε−1

ε .

Proof. The intermediary goods firms’ problem implies the following Hamiltonian:

Ht =
ξt

ξ0


Pj

t
Pt
− pR

t
a

Pj
t

Pt

−ε

− κ

2

(
π

j
t

)2

Yt + λtπ
j
tP

j
t .

The optimality condition is

ξt

ξ0
κπ

j
tYt = λtP

j
t =⇒ π

j
t =

1
κ

ξ0

ξt

λtP
j
t

Yt
.

The co-state equation is (with Pj
t = Pt imposed)

dλt = −
∂H

∂Pj
t

dt + λtσ
λ
t dZt

= −
[

ξt

ξ0

Yt

Pt

ε

a
(pR

t − pR, f lex) + λtπt

]
dt + λtσ

λ
t dZt.

Define

Πt = autπt = πt
Yt

Kt
=

1
κ

ξ0

ξt

λtPt

Kt
.
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By Ito’s Lemma,

dΠt =
1
κ

ξ0

ξt

Pt

Kt
dλt +

1
κ

ξ0

ξt

λt

Kt
dPt +

1
κ

ξ0
λtPt

Kt
d

1
ξt

+
1
κ

ξ0

ξt
λtPtd

1
Kt

+
1
κ

ξ0

ξt

λtPt

Kt
(σλ

t ςt)dt

=
1
κ

ξ0

ξt

Pt

Kt

[
−
(

ξt

ξ0

Yt

Pt

ε

a
(pR

t − pR, f lex) + λtπt

)
dt + λtσ

λ
t dZt

]
+

1
κ

ξ0

ξt

λtPt

Kt
πtdt

+
1
κ

ξ0

ξt

λtPt

Kt

d(1/ξt)

1/ξt
+

1
κ

ξ0

ξt

λtPt

Kt

d(1/Kt)

1/Kt
+

1
κ

ξ0

ξt

λtPt(i)
Kt

(σλ
t ςt)dt

= − ε

κa
(pR

t − pR, f lex)
Yt

Kt
dt + Πt(rt + ς2

t )dt−Πtgtdt + Πt(σ
λ
t ςt)dt + Πt(ςt + σλ

t )dZt

=

[
Πt(rt − gt) + Πt(ς

2
t + σλ

t ςt)−
ε

κa
(pR

t − pR, f lex)
Yt

Kt

]
dt + Πt(ςt + σλ

t )dZt

Note that we used

dξt

ξt
= −rtdt− ςtdZt =⇒ d(1/ξt)

1/ξt
= (rt + ς2

t )dt + ςtdZt

dKt

Kt
= gtdt =⇒ d(1/Kt)

1/Kt
= −gtdt

where rt is the risk-free rate, ςt is the price of aggregate risk,37 and gt = Φ(ιt)− δ(ut) is

the growth rate of capital. Define

σΠ
t = ςt + σλ

t .

Now we end up with equation (39). Further, notice that under log utility,

ςt = (1− ϑt)σ
q,K
t .

B Model Solution

We solve the model using a recursive approach. Let Vt(nt) be the households’ value

function. For expository purposes, we dropped the aggregate states and instead let the

value function be dependent on time t. The households’ problem yields the following

Hamilton-Jacobi-Bellman (HJB) equation

ρVt(nt) = max
ct,ut,ιtθt

{
log ct +

∂Vt(nt)

∂nt
ntµ

n
t +

1
2

∂2Vt(nt)

∂n2
t

n2
t

[
(σn

t )
2 + (σ̃n

t )
2
]}

+
dEt

[
Vt(nt)

]
dt

,

37For derivations of the dynamics of SDF, see Brunnermeier and Sannikov (2016) for example.
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where µn
t and σn

t , σ̃n
t are the drift and volatility of dnt/nt, respectively,

µn
t = θt(dRB

t /dt) + (1− θt)Et

[
dRK

t

]
/dt− ct

nt
,

σn
t = (1− θt)σ

q,K
t ,

σ̃n
t = (1− θt)σ̃t.

The assumption of logarithmic preferences yields the convenient property of scale

invariance. Following Brunnermeier and Sannikov (2016) and Di Tella and Hall (2022),

we guess and verify that the households’ value function takes the form

Vt(nt) = At +
log nt

ρ
, (40)

where At denotes investment opportunities of the households and is potentially a func-

tion of the aggregate states {qB
t , σ̃t}. We denote

dAt = µA
t dt + σA

t dZt.

Plugging the guess into the HJB equation,

ρAt + log nt = max
ct,ut,ιtθt

{
log ct +

µn
t

ρ
− 1

2
(σn

t )
2 + (σ̃n

t )
2

ρ

}
+ µA

t . (41)

Taking the first-order conditions, we see that ct = ρnt and that the choice of ut, ιt, θt

do not depend on nt. Further, since in equilibrium all households choose the same

portfolio θt and consumption rate ct/nt = ρ, we see that µn
t and σn

t are also independent

from the individual state nt. Hence, log nt can be cancelled out on both sides of (41). In

addition, At must satisfy

µA
t = ρAt − max

ct,ut,ιtθt

{
log ρ +

µn
t

ρ
− 1

2
(σn

t )
2 + (σ̃n

t )
2

ρ

}
. (42)

The transversality condition requires that limT→∞ e−ρTE [AT] = 0, which ensures that

the linear backward stochastic differential equation (BSDE) (42) has a unique solution.

Therefore, we conclude that (40) is indeed the household value function.
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C The Numerical Algorithm

Here we outline the numerical algorithm used to solve the model in Section 2.4.

First, from the market clearing equation (21),

ρ(qB
t + qK

t ) = uta− ιt =⇒ uta− ιt

qK
t

=
ρ

1− ϑt
=⇒ qK

t = (1− ϑt)
1 + φaut

1− ϑt + φρ
.

(43)

Using (19), we can then express pR
t as

pR
t =

1− ϑt

1− ϑt + φρ
(1 + φaut)δ

′(ut). (44)

We can rewrite the bond evaluation equation (23), the consistency requirement (15),

and the Phillips curve (39) as

µϑ
t = ρ− (1− ϑt)

2σ̃2
t − s̆t (45)

µ
q,B
t = µB

t − πt −Φ(ιt) + δ(ut) (46)

µΠ
t =

[
it − πt −Φ(ιt) + δ(ut) + σΠ

t ςt

]
− ε

κ

[
1− ϑt

1− ϑt + φρ
(1 + φaut)δ

′(ut)− pR, f lex

]
ut

Πt

(47)

where

ut =
1
a

(
ρ(qK

t + qB
t ) +

1
φ
(qK

t − 1)

)
=

1
a

(ρ +
1
φ

)
qB

t
ϑt
− 1

φ
(1 + qB

t )


ςt = (1− ϑt)σ

q,K
t

σ
q,K
t = −ϑ′(σ̃t)ν(σ̃t)

ϑt(1− ϑt)

Postulate that

ϑt = ϑ(t, qB
t , σ̃t), Πt = Π(t, qB

t , σ̃t).

For generality, the dynamics of σ̃t is denoted by

dσ̃t = µ(σ̃t)dt + ν(σ̃t)dZt.
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Then, by Ito’s lemma,

ϑµϑ = ∂tϑ + (∂qϑ)qBµq,B + (∂σϑ)µ(σ̃) +
1
2
(∂σσϑ)(ν(σ̃))2,

ΠµΠ = ∂tΠ + (∂qΠ)qBµq,B + (∂σΠ)µ(σ̃) +
1
2
(∂σσΠ)(ν(σ̃))2

ΠσΠ = (∂σΠ)ν(σ̃)

Plugging the expressions above into (45) - (47), we get

∂tϑ = ϑ
[
ρ− (1− ϑ)2σ̃2 − s̆

]
− (∂qϑ)qB

[
µB − Π

au
−Φ(ι) + δ(u)

]
− (∂σϑ)µ(σ̃)− 1

2
(∂σσϑ)(ν(σ̃))2

∂tΠ = Π
[

i− Π
au
−Φ(ι) + δ(u) + σΠς

]
− ε

κ

[
1− ϑ

1− ϑ + φρ
(1 + φau)δ′(u)− a

ε− 1
ε

]
u

− (∂qΠ)qB
[

µB − Π
au
−Φ(ι) + δ(u)

]
− (∂σπ)µ(σ̃)− 1

2
(∂σσπ)(ν(σ̃))2

where

ι =
1
φ

(
qB 1− ϑ

ϑ
− 1
)

σΠ = (∂σΠ)
ν(σ̃)

Π

u =
1
a

(ρ +
1
φ

)
qB

ϑ
− 1

φ
(1 + qB)

 i = i(qB, σ̃)

σq,K = − (∂σϑ)ν(σ̃)

ϑ(1− ϑ)
s̆ = s̆(qB, σ̃)

ς = (1− ϑ)σq,K

To solve this system of PDE, we start with guesses for terminal conditions ϑ(T, qB, σ̃), π(T, qB, σ̃)

and iterate backwards in time using a finite difference method.

D Flexible Price Equilibrium

Portfolio Choice. Assume that the excess debt growth is a function of (σ̃t, ϑt), s̆t =

s̆(σ̃t, ϑt). We postulate that ϑt = ϑ(σ̃t). By Ito’s Lemma,

µϑ
t = ϑ′(σ̃t)

µ(σt)

ϑt
+

1
2

ϑ′′(σ̃t)
[ν(σt)]2

ϑt
, σϑ

t = ϑ′(σ̃t)
ν(σ̃t)

ϑt
.
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Then, ϑt can be solved from the bond evaluation equation

µϑ
t = ρ− (1− ϑ(σ̃t))

2σ̃2
t − s̆(σ̃t, ϑ(σ̃t))

ϑ′(σ̃t)
µ(σt)

ϑt
+

1
2

ϑ′′(σ̃t)
[ν(σt)]2

ϑt
= ρ− (1− ϑ(σ̃t))

2σ̃2
t − s̆(σ̃t, ϑ(σ̃t))

which reduces to a one-dimensional ordinary differential equation.

Production and Investment. When prices are flexible, the intermediary goods firms’

problem collapses to a static profit-maximization problem at each time

max
Pj

t

Pj
t

Pt
− pR

t
a

 yj
t s.t. yj

t =

Pj
t

Pt

−ε

Yt.

The firms set their prices at

Pj
t

Pt
=

1
a

ε

ε− 1
pR

t .

In a symmetric equilibrium all firms charge the same price (Pj
t = Pt), so

pR, f lex
t = a

ε− 1
ε

. (48)

First, from equation (44) and (48), we see that equilibrium utilization is a function

of the portfolio weight ϑt,

a
ε− 1

ε
=

1− ϑt

1− ϑt + φρ
(1 + φaut)δ

′(ut) (49)

As we did in equation (43), we can express qK
t , qB

t , ιt in terms of ϑ,38

qK
t = (1− ϑt)

1 + φaut

1− ϑt + φρ
,

qB
t =

ϑt

1− ϑt
qK

t = ϑt
1 + φaut

1− ϑt + φρ
,

ιt = aut − ρ(qK
t + qB

t ) =
aut(1− ϑt)− ρ

1− ϑt + φρ
. (50)

The steady-state capital growth rate can be backed out from equations (49) and (50)

gn
t = Φ(ιt)− δ(ut).

38When Φ(ι) = log(1 + φι)/φ and δ(u) = (δ̄/2)u2, the flexible price values of qK
t and qB

t are given by
equations (27) and (28).
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The Model without a Safe Asset. The flexible price allocation of the model is similar.

Specifically, since ϑt = 0, equations (49) and (50) becomes

a
ε− 1

ε
=

1
1 + φρ

(1 + φaut)δ
′(ut), ιt =

aut − ρ

1 + φρ
.

The steady-state capital growth rate is still gn
t = Φ(ιt)− δ(ut).

E Optimal Policy Implementation

Suppose that the government imposes a subsidy τ
f

t on intermediary goods firms.39

In this case, the rental price of capital under flexible prices (26) is modified to

pR, f lex = (1 + τ
f

t )a
ε− 1

ε
.

Together with (44), we see that utilization under flexible prices is determined by

(1 + τ
f

t )a
ε− 1

ε
=

1− ϑt

1− ϑt + φρ
(1 + φaut)δ

′(ut).

We then get the optimal τ
f

t by plugging in the efficient level of portfolio weight ϑo
t and

utilization rate uo
t from the planner’s problem (36).

In additional, the first-order conditions to the planner’s problem are

δ′(ut) =
a

1 + φaut

[
ρφ + (1− ϑt) +

1
ρ
(1− ϑt + φρ)(1− ϑt)

2σ̃2
t

]
,

Φ′(ιt) =
1− ϑt + φρ

1 + κaut

[
1 +

1
ρ
(1− ϑt + φρ)(1− ϑt)σ̃

2
t

]
.

Simplifying the first-order conditions, we see that the optimal ϑo
t satisfies the following

cubic equation,

ϑ3
t − (3 + φρ)ϑ2

t +

(
3 + 2ρφ +

ρ

σ̃2
t

)
ϑt − (1 + φρ) = 0.

39For simplicity, we assume that the subsidy is funded by lump-sum taxes on the firms, so it is a pure
decision wedge and does not interact with household portfolio choice.
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Applying Ito’s Lemma gives us the dynamics of ϑo
t ,

σϑ
t =

2ρν(σ̃t)

σ̃3
t

[
3ϑ2

t − 2(3 + φρ)ϑt + (3 + 2ρφ +
ρ

σ̃2
t
)

] ,

µϑ
t =

2ρ

σ̃3 µ(σ̃)− 3ρ

σ̃4 [ν(σ̃)]
2 +

2ρ

σ̃3 σϑ
t ν(σ̃)− (σϑ

t )
2
[
3ϑ2

t − (3 + φρ)ϑt

]
3ϑ2

t − 2(3 + φρ)ϑt + (3 + 2ρφ +
ρ

σ̃2
t
)

.

Recall the bond evaluation equation

µϑ
t = ρ− (1− ϑt)

2σ̃2
t − s̆t.

It is then obvious that the optimal tax rate should be

s̆t = ρ− (1− ϑt)
2σ̃2

t − µϑ
t ,

=⇒ τK
t =

ϑt

1− ϑt

[
ρ− (1− ϑt)

2σ̃2
t − µϑ

t

]
.

F Proofs

Proof of Proposition 1. First, since the households are homogeneous and the inter-

mediary goods firms are symmetric, the transfers from firms (7) are simply

ωt = aut − pR
t ut.

Hence, the return on capital (5) is

dRK,i
t (ui

t, ιit) =

(
aui

t − ιit
qK

t
− τK

t + g(ui
t, ιit) + µ

q,K
t

)
dt + σ̃tdZ̃i

t + σ
q,K
t dZt.

Then we can easily obtain the first-order conditions from the HJB laid out in Appendix

B (i.e., equation (41)).

Proof of Proposition 2. Plugging the expressions for dRB
t and dRK

t into the first-order

condition (20), we get

aut − ιt

qK
t
− τK

t + gt + µ
q,K
t −

(
it − µB

t + gt − µ
q,B
t

)
= (1− ϑt)

[
σ̃2

t + (σ
q,K
t )2

]
aut − ιt

qK
t
− (1− ϑt)σ̃

2
t − (it − µB

t + τK
t ) = µ

q,B
t − µ

q,K
t + (1− ϑt)(σ

q,K
t )2. (51)
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Applying Ito’s Lemma to the asset market clearing condition ϑt =
qB

t
qK

t +qB
t

yields

σ
q,B
t − σ

q,K
t =

σϑ
t

1− ϑt
,

µ
q,B
t − µ

q,K
t =

1
1− ϑt

[
µϑ

t + σϑ
t

(
σ

q,B
t − σϑ

t

)]
.

Since σ
q,B
t = 0,

µ
q,B
t − µ

q,K
t + (1− ϑt)(σ

q,K
t )2 =

1
1− ϑt

µϑ
t .

Further, notice that the goods market clearing condition implies that

aut − ιt = ρ(qB
t + qK

t ) =⇒ aut − ιt

qK
t

=
ρ

1− ϑt
.

Finally, the government budget constraint (9) requires that

it − µB
t + τK

t =
1

1− ϑt
s̆t.

Plugging all terms into (51) results in the bond evaluation equation (23). Applying Ito’s

Lemma to (e−ρtϑt) and integrating forward gives us the integral form (24).

Proof of Proposition 3. ϑt is given by the bond evaluation equation

ϑt = Et

{∫ ∞

t
e−ρ(s−t)ϑs

[
(1− ϑs)

2σ̃2
s + s̆(σ̃t, ϑt)

]
ds
}

.

It is obvious that the solution to this equation only depends on σ̃t.

Proof of Proposition 4. Consider equation (34),
uta− ιt

qK
t

+ gt +
[
µ

q,K
t − (σ

q,K
t )2

]
= r f

t + τK
t + σ̃2

t .

We want an equilibrium with πt = µ
q,K
t = µ

q,B
t = τK

t = 0 and r f
t = it, so

it =
uta− ιt

qK
t

+ gt − σ̃2
t .

By market clearing, (uta− ι)/qK
t = ρ. Then the capital growth rate coincides with its

steady-state level if the interest rate is set at

in
t = ρ + gn

t − σ̃2
t .

By standard arguments, we need other equilibrium selection techniques to ensure that

this is the unique equilibrium (e.g., the Taylor Principle).
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Proof of Proposition 5. With lump-sum taxes, the government budget constraint is

itBt = µB
t Bt + PtτtKt + Ptτ

K
t · qK

t Kt =⇒ it = µB
t +

1
qB

t
τt +

qK
t

qB
t

τK
t .

The consistency condition (15) becomes

µ
q,B
t = µB

t − πt − gt = it −
τt

qB
t
− qK

t
qB

t
τK

t − πt − gt. (52)

The return on bonds is now

dRB
t = itdt +

d(qB
t Kt/Bt)

qB
t Kt/Bt

=

(
1
qB

t
τt +

qK
t

qB
t

τK
t + gt + µ

q,B
t

)
dt.

No arbitrage between government bonds and tax claims requires

τt

qτ
t
+ µ

q,τ
t =

τt

qB
t
+

qK
t

qB
t

τK
t + µ

q,B
t (53)

The total supply of idiosyncratic-risk-free assets to the household sector is qG
t Kt =

(qB
t − qτ

t )Kt. The portfolio of all safe assets that is long in the bond stock and short

in the total tax liabilities has the return

dRG
t =

qB
t

qG
t

dRB
t −

qτ
t

qG
t

dRτ
t =

(
qK

t

qG
t

τK
t + gt + µ

q,G
t

)
dt. (54)

In addition, the law of motion of qG
t is given by

µ
q,G
t =

qB
t

qG
t

µ
q,B
t −

qτ
t

qG
t

µ
q,τ
t =

(
it −

qK
t

qG
t

τK
t

)
− πt − gt. (55)

Comparing (54) with (4) and (9), we see that the return dRG
t is the same as the return

on bonds dRB
t in the model without lump-sum taxes. Similar, the law of motion of qG

t

(55) is the same as (15), the law of motion of qB
t in the baseline model. In equilibrium,

market clearing dictates that the households collectively hold all safe assets (long in

government bonds and short in tax claims). It is then obvious that the economy with

lump-sum taxes has the same dynamics as before with the price of bonds qB
t replaced

by the price of all safe assets qG
t .
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Using equations (52) and (53), we see that in the model with lump-sum taxes, qτ
t

satisfies the following ODE

dqτ
t

qτ
t

=

(
it − πt − gt −

τt

qτ
t

)
dt. (56)

We consider a zero-inflation equilibrium with πt = 0. Suppose that in the flexible

price equilibrium, the nominal rate tracks the economic growth rate it = gn
t . In the

equilibrium, the ODE (56) then becomes

dqτ
t

dt
= −τt,

which is a forward equation with solutions of the following form

qτ
t =

∫ ∞

t
τsds + D.

where D is a constant. For simplicity, we assume that there exist no bubbles in the

valuation of tax claims, so D = 0.

For a given value of qB
t , the government can then choose {τs}∞

s=t to ensure that the

total value of government liability is the same as the bond price under flexible prices,

qG
t = qB

t − qτ
t = qB, f lex

t .

As we have argued in Proposition 3, the household portfolio problem is unaffected

by price-setting frictions, so qK
t will be at its flexible price level whenever qG

t is.

Proof of Proposition 6. The welfare decomposition follows directly from the con-

sumption decomposition in the main text. For the second integral, we use the mathe-

matical result below.

For an Ito process Xt where dXt/Xt = µX
t dt + σX

t dZt + σ̃X
t dZ̃t, the dynamics of

log Xt is given by

d log Xt =

[
µX

t −
1
2
(σX

t )2 − 1
2
(σ̃X

t )2
]

dt + σX
t dZt + σ̃X

t dZ̃t.

Hence,

log Xt = log X0 +
∫ t

0

[
µX

s −
1
2
(σX

s )2 − 1
2
(σ̃X

s )2
]

ds+
∫ t

0
σX

s dZs +
∫ t

0
σ̃X

s dZ̃s︸ ︷︷ ︸
mean zero

.
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Using integration by parts, one can show that

E0

[∫ ∞

0
e−ρt log Xtdt

]
=

1
ρ

log X0 +
1
ρ

E0

[∫ ∞

0
e−ρt

(
µX

t −
1
2
(σX

t )2 − 1
2
(σ̃X

t )2
)

dt

]
.

G Additional Details on Model Extension with Long-term
Bonds

We start by deriving the return on bonds dRB
t in the model with long-term bonds

that replaces equation (4) from the baseline model.

Suppose the nominal bond price PB
t satisfies

dPB
t

PB
t

= µP,B
t dt + σP,B

t dZt.

Then the return on bonds is (in general, permitting flexible prices)

dRB
t =

d
(

PB
t

Pt

)
+ λ

(
1
Pt
− PB

t
Pt

)
dt

PB
t

Pt

=

(
µP,B

t − πt − σP
t

(
σP,B

t − σP
t

))
dt +

(
σP,B

t − σP
t

)
dZt + λ

(
1

PB
t
− 1

)
︸ ︷︷ ︸

=īt

dt. (57)

As before, we define qB
t := PB

t Bt
PtKt

, so that PB
t

Pt
=

qB
t Kt
Bt

and thus

µP,B
t − πt − σP

t

(
σP,B

t − σP
t

)
= µ

q,B
t + gt − µB

t , σP,B
t − σP

t = σ
q,B
t .

Substituting these equations into the previous return equation implies

dRB
t =

(
µ

q,B
t + gt + īt − µB

t

)
dt + σ

q,B
t dZt

=
(

µ
q,B
t + gt + s̆t

)
dt + σ

q,B
t dZt,

where the second line follows from the government budget constraint. This is precisely

the same equation as in the baseline model with short-term bonds.40

40To see this, compare the equation with equation (4) and replace their it − µB
t by s̆t using equa-

tion (11).
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Clearly, the capital return (5) is also unaffected by the introduction of long-term

bonds. Consequently, the portfolio choice condition between bonds and capital for

each individual agent must be identical as in the baseline model. Therefore, we obtain

the same bond valuation equation as before for the bond wealth share ϑt (equation (23)).

Also, the separation result from Proposition 3 remains valid.

As a corollary, we obtain immediately that under flexible prices, the equilibrium

dynamics of qB
t , qK

t , ut, and ιt and the consumption allocation across individual agents

remain unaffected by the maturity structure λ and are as in the baseline model.

The derivations made in the main text and the claim that all model equations are

as in the baseline model, except that it must be replaced with īt and qB
t has to be split

according to equation (38) do not require further clarification here. It is thus only left to

clarify the relationship between nominal short rates it and the variable īt.

Specifically, we show that for given ϑ dynamics (due to portfolio separation, Propo-

sition 3), there is in equilibrium a mapping from interest rate paths {it}∞
t=0 to paths

{īt}∞
t=0 of the variable ī that satisfy in addition inft≥0 īt > −λ.41 The relationship be-

tween the two is described by the backward stochastic differential equation (BSDE)

Et
[
dīt
]
=
((

λ + īt
) (

īt − it
)
− σϑ

t σī,t

)
dt. (58)

Here, σī,t denotes the arithmetic volatility of īt.

Before deriving this BSDE, we show how to invert the mapping, i.e. start with some

desired Ito process for īt,

dīt = µī,tdt + σī,tdZt

and back out the required process for it to implement it. This is important, as only then

it is feasible to treat īt as the policy instrument. Given the desired Ito process for īt, we

equate µī,tdt with Et
[
dīt
]

in the BSDE and obtain, after solving for it,

it = īt −
µī,t + σϑ

t σī,t

λ + īt
.

Under the assumption inft≥0 īt > −λ, the denominator in the second term is always

positive and thus it required to implement īt is well-defined.

41This additional restriction is natural as it is equivalent to bounded nominal bond prices PB
t (compare

equation (38)).
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To derive BSDE (58), consider the portfolio choice between (long-term) government

bonds and a zero-net-supply nominal bond with infinitesimal duration. Call the latter

M (for money), its return is (under sticky prices, so σP
t = 0)

dRM
t = itdt +

d (1/Pt)

1/Pt
= (it − πt)dt.

Using the return representation (57) for bonds and the fact σP
t = 0 under sticky prices to

simplify that representation, the portfolio choice condition between bonds and money

becomes

īt − it + µP,B
t = σn

t σP,B
t .

Now, σn
t = σ

qB+qK

t = σ
q,B
t − σϑ

t = σP,B
t − σϑ

t and īt = λ
(

1/PB
t − 1

)
, so

dīt = λd
(

1/PB
t

)
= λ

1
PB

t

(
−µP,B

t +
(

σP,B
t

)2
)

dt− λ
1

PB
t

σP,B
t dZt

= λ
1

PB
t

((
īt − it

)
+ σϑ

t σP,B
t

)
dt− λ

1
PB

t
σP,B

t dZt

which immediately implies the BSDE (58) stated above.

We conclude this appendix by remarking that the implicit integral formula for īt for

the case without risk (σī,t = 0) stated in the main text is easily verified by taking the

time derivative in this formula and comparing the result with BSDE (58).
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